OCR M4 2003 June — Question 7

Exam BoardOCR
ModuleM4 (Mechanics 4)
Year2003
SessionJune
TopicSimple Harmonic Motion

7
\includegraphics[max width=\textwidth, alt={}, center]{de53978b-aa96-4fa2-a928-81a16450154e-4_557_1036_278_553} A uniform rod \(A B\), of mass \(m\) and length \(2 a\), is pivoted to a fixed point at \(A\) and is free to rotate in a vertical plane. Two fixed vertical wires in this plane are a distance \(6 a\) apart and the point \(A\) is half-way between the two wires. Light smooth rings \(R _ { 1 }\) and \(R _ { 2 }\) slide on the wires and are connected to \(B\) by light elastic strings, each of natural length \(a\) and modulus of elasticity \(\frac { 1 } { 4 } m g\). The strings \(B R _ { 1 }\) and \(B R _ { 2 }\) are always horizontal and the angle between \(A B\) and the upward vertical is \(\theta\), where \(- \frac { 1 } { 2 } \pi < \theta < \frac { 1 } { 2 } \pi\) (see diagram).
  1. Taking \(A\) as the reference level for gravitational potential energy, show that the total potential energy of the system is $$m g a \left( 1 + \cos \theta + \sin ^ { 2 } \theta \right) .$$
  2. Given that \(\theta = 0\) is a position of stable equilibrium, find the approximate period of small oscillations about this position.