Edexcel M5 2004 June — Question 4

Exam BoardEdexcel
ModuleM5 (Mechanics 5)
Year2004
SessionJune
TopicSimple Harmonic Motion

4. A uniform circular disc, of mass \(m\) and radius \(r\), has a diameter \(A B\). The point \(C\) on \(A B\) is such that \(A C = \frac { 1 } { 2 } r\). The disc can rotate freely in a vertical plane about a horizontal axis through \(C\), perpendicular to the plane of the disc. The disc makes small oscillations in a vertical plane about the position of equilibrium in which \(B\) is below \(A\).
  1. Show that the motion is approximately simple harmonic.
  2. Show that the period of this approximate simple harmonic motion is \(\pi \sqrt { \left( \frac { 6 r } { g } \right) }\). The speed of \(B\) when it is vertically below \(A\) is \(\sqrt { \left( \frac { g r } { 54 } \right) }\). The disc comes to rest when \(C B\) makes an angle \(\alpha\) with the downward vertical.
  3. Find an approximate value of \(\alpha\).
    (3)