7 A simple pendulum consists of a light inextensible string of length 0.8 m and a particle \(P\) of mass \(m \mathrm {~kg}\). The pendulum is hanging vertically at rest from a fixed point \(O\) when \(P\) is given a horizontal velocity of \(0.3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
- Show that, in the subsequent motion, the maximum angle between the string and the downward vertical is 0.107 radians, correct to 3 significant figures.
- Show that the motion may be modelled as simple harmonic motion, and find the period of this motion.
- Find the time after the start of the motion when the velocity of the particle is first \(- 0.2 \mathrm {~ms} ^ { - 1 }\) and find the angular displacement of \(O P\) from the downward vertical at this time.