Edexcel
FP2
2008
June
Q5
9 marks
Standard +0.8
5. (a) Find, in terms of \(k\), the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 3 x = k t + 5 , \text { where } k \text { is a constant and } t > 0 .$$
For large values of \(t\), this general solution may be approximated by a linear function.
(b) Given that \(k = 6\), find the equation of this linear function.(2)(Total 9 marks)
CAIE
FP1
2010
June
Q8
9 marks
Challenging +1.2
8 Obtain the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 10 \sin 3 x - 20 \cos 3 x$$
Show that, for large positive \(x\) and independently of the initial conditions,
$$y \approx R \sin ( 3 x + \phi )$$
where the constants \(R\) and \(\phi\), such that \(R > 0\) and \(0 < \phi < 2 \pi\), are to be determined correct to 2 decimal places.
CAIE
FP1
2014
June
Q10
12 marks
Challenging +1.2
10 Find the particular solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 0.16 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 0.0064 x = 8.64 + 0.32 t$$
given that when \(t = 0 , x = 0\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\).
Show that, for large positive \(t , \frac { \mathrm {~d} x } { \mathrm {~d} t } \approx 50\).
CAIE
FP1
2012
November
Q12 OR
Challenging +1.2
Obtain the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 13 x = 75 \cos 2 t$$
Given that \(x = 5\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\) when \(t = 0\), find \(x\) in terms of \(t\).
Show that, for large positive values of \(t\) and for any initial conditions,
$$x \approx 5 \cos ( 2 t - \phi ) ,$$
where the constant \(\phi\) is such that \(\tan \phi = \frac { 4 } { 3 }\).