Asymptotic behavior for large values

A question is this type if and only if it asks to determine or state an approximate solution or behavior of y (or x) for large positive values of the independent variable.

15 questions · Challenging +1.0

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2024 June Q5
10 marks Challenging +1.2
5
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 10 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 25 x = 338 \sin t$$ \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-10_2715_35_143_2012}
  2. Show that, for large positive values of \(t\) and for any initial conditions, $$x \approx R \sin ( t - \phi ) ,$$ where the constants \(R\) and \(\phi\) are to be determined.
Edexcel FP2 2004 June Q4
12 marks Challenging +1.2
4. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 65 \sin 2 x , x > 0$$
  1. Find the general solution of the differential equation.
  2. Show that for large values of \(x\) this general solution may be approximated by a sine function and find this sine function.
    (3)(Total 12 marks)
Edexcel FP2 2011 June Q8
15 marks Challenging +1.2
  1. The differential equation
$$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 9 x = \cos 3 t , \quad t \geqslant 0$$ describes the motion of a particle along the \(x\)-axis.
  1. Find the general solution of this differential equation.
  2. Find the particular solution of this differential equation for which, at \(t = 0\), $$x = \frac { 1 } { 2 } \text { and } \frac { \mathrm { d } x } { \mathrm {~d} t } = 0$$ On the graph of the particular solution defined in part (b), the first turning point for \(t > 30\) is the point \(A\).
  3. Find approximate values for the coordinates of \(A\).
OCR FP3 2012 June Q6
10 marks Challenging +1.2
6 The variables \(x\) and \(y\) satisfy the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } = 12 \mathrm { e } ^ { 2 x }$$
  1. Find the general solution of the differential equation.
  2. It is given that the curve which represents a particular solution of the differential equation has gradient 6 when \(x = 0\), and approximates to \(y = \mathrm { e } ^ { 2 x }\) when \(x\) is large and positive. Find the equation of the curve.
Edexcel FP2 2008 June Q5
9 marks Standard +0.8
5. (a) Find, in terms of \(k\), the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 3 x = k t + 5 , \text { where } k \text { is a constant and } t > 0 .$$ For large values of \(t\), this general solution may be approximated by a linear function.
(b) Given that \(k = 6\), find the equation of this linear function.(2)(Total 9 marks)
OCR FP3 2011 June Q3
11 marks Standard +0.8
3 The variables \(x\) and \(y\) satisfy the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + 4 y = 5 \cos 3 x$$
  1. Find the complementary function.
  2. Hence, or otherwise, find the general solution.
  3. Find the approximate range of values of \(y\) when \(x\) is large and positive.
CAIE FP1 2009 June Q8
8 marks Challenging +1.2
8 Find the general solution of the differential equation $$4 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 65 y = 65 x ^ { 2 } + 8 x + 73$$ Show that, whatever the initial conditions, \(\frac { y } { x ^ { 2 } } \rightarrow 1\) as \(x \rightarrow \infty\).
CAIE FP1 2010 June Q8
9 marks Challenging +1.2
8 Obtain the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 10 \sin 3 x - 20 \cos 3 x$$ Show that, for large positive \(x\) and independently of the initial conditions, $$y \approx R \sin ( 3 x + \phi )$$ where the constants \(R\) and \(\phi\), such that \(R > 0\) and \(0 < \phi < 2 \pi\), are to be determined correct to 2 decimal places.
CAIE FP1 2011 June Q8
11 marks Standard +0.8
8 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 5 x = 10 \sin t$$ Find the particular solution, given that \(x = 5\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 2\) when \(t = 0\). State an approximate solution for large positive values of \(t\).
CAIE FP1 2013 June Q9
10 marks Standard +0.3
9 Find \(x\) in terms of \(t\) given that $$4 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = 6 \mathrm { e } ^ { - 2 t }$$ and that, when \(t = 0 , x = \frac { 5 } { 3 }\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 7 } { 6 }\). State \(\lim _ { t \rightarrow \infty } x\).
CAIE FP1 2014 June Q10
12 marks Challenging +1.2
10 Find the particular solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 0.16 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 0.0064 x = 8.64 + 0.32 t$$ given that when \(t = 0 , x = 0\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\). Show that, for large positive \(t , \frac { \mathrm {~d} x } { \mathrm {~d} t } \approx 50\).
CAIE FP1 2016 November Q6
9 marks Standard +0.8
6 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 7 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 10 x = 116 \sin 2 t$$ State an approximate solution for large positive values of \(t\).
CAIE FP1 2018 November Q10
13 marks Challenging +1.8
10
  1. Find the particular solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 10 x = 37 \sin 3 t$$ given that \(x = 3\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\) when \(t = 0\).
  2. Show that, for large positive values of \(t\) and for any initial conditions, $$x \approx \sqrt { } ( 37 ) \sin ( 3 t - \phi ) ,$$ where the constant \(\phi\) is such that \(\tan \phi = 6\).
CAIE FP1 2018 November Q4
8 marks Standard +0.8
4
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = 4 \sin t$$
  2. State an approximate solution for large positive values of \(t\).
CAIE FP1 2012 November Q12 OR
Challenging +1.2
Obtain the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 13 x = 75 \cos 2 t$$ Given that \(x = 5\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\) when \(t = 0\), find \(x\) in terms of \(t\). Show that, for large positive values of \(t\) and for any initial conditions, $$x \approx 5 \cos ( 2 t - \phi ) ,$$ where the constant \(\phi\) is such that \(\tan \phi = \frac { 4 } { 3 }\).