Edexcel FP2 2011 June — Question 8

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2011
SessionJune
TopicSecond order differential equations

  1. The differential equation
$$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 9 x = \cos 3 t , \quad t \geqslant 0$$ describes the motion of a particle along the \(x\)-axis.
  1. Find the general solution of this differential equation.
  2. Find the particular solution of this differential equation for which, at \(t = 0\), $$x = \frac { 1 } { 2 } \text { and } \frac { \mathrm { d } x } { \mathrm {~d} t } = 0$$ On the graph of the particular solution defined in part (b), the first turning point for \(t > 30\) is the point \(A\).
  3. Find approximate values for the coordinates of \(A\).