Resonance cases requiring modified PI

A question is this type if and only if it explicitly requires finding a particular integral of the form λx·f(x) or λx²·f(x) because the standard form is already in the complementary function.

18 questions · Challenging +1.2

Sort by: Default | Easiest first | Hardest first
Edexcel FP2 2003 June Q8
16 marks Challenging +1.2
8. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 9 y = 4 \mathrm { e } ^ { 3 t } , \quad t \geq 0 .$$
  1. Show that \(K t ^ { 2 } e ^ { 3 t }\) is a particular integral of the differential equation, where \(K\) is a constant to be found.
  2. Find the general solution of the differential equation. (3) Given that a particular solution satisfies \(\boldsymbol { y } = 3\) and \(\frac { \mathrm { d } y } { \mathrm {~d} t } = 1\) when \(\boldsymbol { t } = \mathbf { 0 }\),
  3. find this solution.(4) Another particular solution which satisfies \(\boldsymbol { y } = \mathbf { 1 }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} t } = \mathbf { 0 }\) when \(\boldsymbol { t } = \mathbf { 0 }\), has equation $$y = \left( 1 - 3 t + 2 t ^ { 2 } \right) \mathrm { e } ^ { 3 t }$$
  4. For this particular solution draw a sketch graph of \(y\) against \(t\), showing where the graph crosses the \(t\)-axis. Determine also the coordinates of the minimum of the point on the sketch graph.
Edexcel FP2 2010 June Q8
14 marks Challenging +1.2
8. (a) Find the value of \(\lambda\) for which \(y = \lambda x \sin 5 x\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 25 y = 3 \cos 5 x$$ (b) Using your answer to part (a), find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 25 y = 3 \cos 5 x$$ Given that at \(x = 0 , y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 5\),
(c) find the particular solution of this differential equation, giving your solution in the form \(y = \mathrm { f } ( x )\).
(d) Sketch the curve with equation \(y = \mathrm { f } ( x )\) for \(0 \leqslant x \leqslant \pi\).
Edexcel FP2 2013 June Q7
13 marks Challenging +1.2
  1. (a) Find the value of \(\lambda\) for which \(\lambda t ^ { 2 } \mathrm { e } ^ { 3 t }\) is a particular integral of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 9 y = 6 \mathrm { e } ^ { 3 t } , \quad t \geqslant 0$$ (b) Hence find the general solution of this differential equation. Given that when \(t = 0 , y = 5\) and \(\frac { \mathrm { d } y } { \mathrm {~d} t } = 4\) (c) find the particular solution of this differential equation, giving your solution in the form \(y = \mathrm { f } ( t )\).
Edexcel FP2 2013 June Q7
7 marks Standard +0.8
7. (a) Find the value of the constant \(\lambda\) for which \(y = \lambda x \mathrm { e } ^ { 2 x }\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 y = 6 \mathrm { e } ^ { 2 x }$$ (b) Hence, or otherwise, find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 y = 6 \mathrm { e } ^ { 2 x }$$
Edexcel FP2 Q9
13 marks Challenging +1.2
9. Resonance in an electrical circuit is modelled by the differential equation $$\frac { \mathrm { d } ^ { 2 } V } { \mathrm {~d} t ^ { 2 } } + 64 V = \cos 8 t$$ where \(V\) represents the voltage in the circuit and \(t\) represents time.
  1. Find the value of \(\lambda\) for which \(\lambda\) tsin8t is a particular integral of the differential equation.
  2. Find the general solution of the differential equation. Given that \(V = 0\) and \(\frac { \mathrm { d } V } { \mathrm {~d} t } = 0\) when \(t = 0\),
  3. find the particular solution of the equation.
  4. Describe the behaviour of \(V\) as \(t\) becomes large, according to this model.
Edexcel F2 Specimen Q8
14 marks Challenging +1.3
  1. (a) Find the value of \(\lambda\) for which \(y = \lambda x \sin 5 x\) is a particular integral of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 25 y = 3 \cos 5 x$$ (b) Using your answer to part (a), find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 25 y = 3 \cos 5 x$$ Given that at \(x = 0 , y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 5\),
(c) find the particular solution of this differential equation, giving your solution in the form \(y = \mathrm { f } ( x )\).
(d) Sketch the curve with equation \(y = \mathrm { f } ( x )\) for \(0 \leqslant x \leqslant \pi\).
Edexcel FP2 2002 June Q3
13 marks Standard +0.8
  1. Show that \(y = \frac { 1 } { 2 } x ^ { 2 } \mathrm { e } ^ { x }\) is a solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = \mathrm { e } ^ { x }$$
  2. Solve the differential equation \(\quad \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = \mathrm { e } ^ { x }\).
    given that at \(x = 0 , y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2\).
OCR FP3 2010 January Q6
12 marks Challenging +1.3
6 The variables \(x\) and \(y\) satisfy the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 16 y = 8 \cos 4 x$$
  1. Find the complementary function of the differential equation.
  2. Given that there is a particular integral of the form \(y = p x \sin 4 x\), where \(p\) is a constant, find the general solution of the equation.
  3. Find the solution of the equation for which \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\).
OCR FP3 2012 January Q5
11 marks Challenging +1.3
5 The variables \(x\) and \(y\) satisfy the differential equation $$2 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 2 y = 5 \mathrm { e } ^ { - 2 x }$$
  1. Find the complementary function of the differential equation.
  2. Given that there is a particular integral of the form \(y = p x \mathrm { e } ^ { - 2 x }\), find the constant \(p\).
  3. Find the solution of the equation for which \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 4\) when \(x = 0\).
OCR FP3 2013 January Q6
11 marks Challenging +1.8
6 The differential equation \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 y = \sin k x\) is to be solved, where \(k\) is a constant.
  1. In the case \(k = 2\), by using a particular integral of the form \(a x \cos 2 x + b x \sin 2 x\), find the general solution.
  2. Describe briefly the behaviour of \(y\) when \(x \rightarrow \infty\).
  3. In the case \(k \neq 2\), explain whether \(y\) would exhibit the same behaviour as in part (ii) when \(x \rightarrow \infty\).
OCR FP3 2009 June Q5
9 marks Challenging +1.2
5 The variables \(x\) and \(y\) satisfy the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 9 y = \mathrm { e } ^ { 3 x }$$
  1. Find the complementary function.
  2. Explain briefly why there is no particular integral of either of the forms \(y = k \mathrm { e } ^ { 3 x }\) or \(y = k x \mathrm { e } ^ { 3 x }\).
  3. Given that there is a particular integral of the form \(y = k x ^ { 2 } \mathrm { e } ^ { 3 x }\), find the value of \(k\).
CAIE FP1 2013 June Q7
10 marks Challenging +1.2
7 Find the value of the constant \(\lambda\) such that \(\lambda x \mathrm { e } ^ { - x }\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 6 \mathrm { e } ^ { - x }$$ Find the solution of the differential equation for which \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\) when \(x = 0\).
CAIE FP1 2016 June Q9
11 marks Challenging +1.2
9 Find the value of the constant \(k\) such that \(y = k x ^ { 2 } \mathrm { e } ^ { 2 x }\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 4 \mathrm { e } ^ { 2 x }$$ Hence find the general solution of ( \(*\) ). Find the particular solution of ( \(*\) ) such that \(y = 3\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 2\) when \(x = 0\).
AQA FP3 2010 January Q5
12 marks Challenging +1.2
5 It is given that \(y\) satisfies the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 2 \mathrm { e } ^ { - 2 x }$$
  1. Find the value of the constant \(p\) for which \(y = p x \mathrm { e } ^ { - 2 x }\) is a particular integral of the given differential equation.
  2. Solve the differential equation, expressing \(y\) in terms of \(x\), given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\).
AQA FP3 2013 January Q3
5 marks Challenging +1.2
3 It is given that the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 0$$ is \(y = \mathrm { e } ^ { x } ( A x + B )\). Hence find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 6 \mathrm { e } ^ { x }$$
Edexcel CP1 2022 June Q10
14 marks Challenging +1.2
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f237de57-ed6d-4bea-8bb0-1b4e5b66d7da-28_428_301_246_881} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} The motion of a pendulum, shown in Figure 3, is modelled by the differential equation $$\frac { \mathrm { d } ^ { 2 } \theta } { \mathrm {~d} t ^ { 2 } } + 9 \theta = \frac { 1 } { 2 } \cos 3 t$$ where \(\theta\) is the angle, in radians, that the pendulum makes with the downward vertical, \(t\) seconds after it begins to move.
    1. Show that a particular solution of the differential equation is $$\theta = \frac { 1 } { 12 } t \sin 3 t$$
    2. Hence, find the general solution of the differential equation. Initially, the pendulum
      • makes an angle of \(\frac { \pi } { 3 }\) radians with the downward vertical
  1. is at rest
  2. Given that, 10 seconds after it begins to move, the pendulum makes an angle of \(\alpha\) radians with the downward vertical,
  3. determine, according to the model, the value of \(\alpha\) to 3 significant figures. Given that the true value of \(\alpha\) is 0.62
  4. evaluate the model. The differential equation $$\frac { \mathrm { d } ^ { 2 } \theta } { \mathrm {~d} t ^ { 2 } } + 9 \theta = \frac { 1 } { 2 } \cos 3 t$$ models the motion of the pendulum as moving with forced harmonic motion.
  5. Refine the differential equation so that the motion of the pendulum is simple harmonic motion.
Edexcel FP2 Q15
14 marks Challenging +1.2
15. (a) Find the value of \(\lambda\) for which \(\lambda x \cos 3 x\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 9 y = - 12 \sin 3 x$$ (b) Hence find the general solution of this differential equation. The particular solution of the differential equation for which \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2\) at \(x = 0\), is \(y = \mathrm { g } ( x )\).
(c) Find \(\mathrm { g } ( x )\).
(d) Sketch the graph of \(y = \mathrm { g } ( x ) , 0 \leq x \leq \pi\).
[0pt] [P4 January 2003 Qn 7]
AQA Further Paper 2 2020 June Q13
10 marks Challenging +1.2
13
  1. Show that Charlotte's method will fail to find a particular integral for the differential equation.
    13
  2. Explain how Charlotte should have started her solution differently and find the general solution of the differential equation.