| Exam Board | Edexcel |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2013 |
| Session | June |
| Topic | Second order differential equations |
7. (a) Find the value of the constant \(\lambda\) for which \(y = \lambda x \mathrm { e } ^ { 2 x }\) is a particular integral of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 y = 6 \mathrm { e } ^ { 2 x }$$
(b) Hence, or otherwise, find the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 y = 6 \mathrm { e } ^ { 2 x }$$