OCR MEI Further Pure Core 2021 November — Question 10

Exam BoardOCR MEI
ModuleFurther Pure Core (Further Pure Core)
Year2021
SessionNovember
TopicComplex numbers 2

10
  1. Show on an Argand diagram the points representing the three cube roots of unity.
    1. Find the exact roots of the equation \(z ^ { 3 } - 1 = \sqrt { 3 } \mathrm { i }\), expressing them in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta < \pi\).
    2. The points representing the cube roots of unity form a triangle \(\Delta _ { 1 }\). The points representing the roots of the equation \(z ^ { 3 } - 1 = \sqrt { 3 } \mathrm { i }\) form a triangle \(\Delta _ { 2 }\). State a sequence of two transformations that maps \(\Delta _ { 1 }\) onto \(\Delta _ { 2 }\).
    3. The three roots in part (b)(i) are \(z _ { 1 } , z _ { 2 }\) and \(z _ { 3 }\). By simplifying \(z _ { 1 } + z _ { 2 } + z _ { 3 }\), verify that the sum of these roots is zero.
    4. Hence show that \(\sin 20 ^ { \circ } + \sin 140 ^ { \circ } = \sin 100 ^ { \circ }\).