11 An Argand diagram with the point A representing a complex number \(z _ { 1 }\) is shown below.
\includegraphics[max width=\textwidth, alt={}, center]{b57a2590-84e8-4998-9633-902db861f23a-4_716_778_932_239}
The complex numbers \(z _ { 2 }\) and \(z _ { 3 }\) are \(z _ { 1 } \mathrm { e } ^ { \frac { 2 } { 3 } \mathrm { i } \pi }\) and \(z _ { 1 } \mathrm { e } ^ { \frac { 4 } { 3 } \mathrm { i } \pi }\) respectively.
- On the copy of the Argand diagram in the Printed Answer Booklet, mark the points B and C representing the complex numbers \(z _ { 2 }\) and \(z _ { 3 }\).
- Show that \(z _ { 1 } + z _ { 2 } + z _ { 3 } = 0\).
- Given now that \(z _ { 1 } , z _ { 2 }\) and \(z _ { 3 }\) are roots of the equation \(z ^ { 3 } = 8 \mathrm { i }\), find these three roots, giving your answers in the form \(\mathrm { a } + \mathrm { ib }\), where \(a\) and \(b\) are real and exact.