A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q4
Edexcel CP1 2024 June — Question 4
Exam Board
Edexcel
Module
CP1 (Core Pure 1)
Year
2024
Session
June
Topic
Complex numbers 2
The complex number \(z = \mathrm { e } ^ { \mathrm { i } \theta }\), where \(\theta\) is real.
Show that
$$z ^ { n } + \frac { 1 } { z ^ { n } } \equiv 2 \cos n \theta$$ where \(n\) is a positive integer.
Show that $$\cos ^ { 5 } \theta = \frac { 1 } { 16 } ( \cos 5 \theta + 5 \cos 3 \theta + 10 \cos \theta )$$
Hence, making your reasoning clear, determine all the solutions of $$\cos 5 \theta + 5 \cos 3 \theta + 12 \cos \theta = 0$$ in the interval \(0 \leqslant \theta < 2 \pi\)
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8