Edexcel CP1 2024 June — Question 4

Exam BoardEdexcel
ModuleCP1 (Core Pure 1)
Year2024
SessionJune
TopicComplex numbers 2

  1. The complex number \(z = \mathrm { e } ^ { \mathrm { i } \theta }\), where \(\theta\) is real.
    1. Show that
    $$z ^ { n } + \frac { 1 } { z ^ { n } } \equiv 2 \cos n \theta$$ where \(n\) is a positive integer.
  2. Show that $$\cos ^ { 5 } \theta = \frac { 1 } { 16 } ( \cos 5 \theta + 5 \cos 3 \theta + 10 \cos \theta )$$
  3. Hence, making your reasoning clear, determine all the solutions of $$\cos 5 \theta + 5 \cos 3 \theta + 12 \cos \theta = 0$$ in the interval \(0 \leqslant \theta < 2 \pi\)