If \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to prove that
$$z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$
8
Express \(\sin ^ { 5 } \theta\) in terms of \(\sin 5 \theta , \sin 3 \theta\) and \(\sin \theta\)
8