AQA Further Paper 1 2019 June — Question 8

Exam BoardAQA
ModuleFurther Paper 1 (Further Paper 1)
Year2019
SessionJune
TopicComplex numbers 2

8
  1. If \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to prove that $$z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$ 8
  2. Express \(\sin ^ { 5 } \theta\) in terms of \(\sin 5 \theta , \sin 3 \theta\) and \(\sin \theta\)
    8
  3. Hence show that $$\int _ { 0 } ^ { \frac { \pi } { 3 } } \sin ^ { 5 } \theta d \theta = \frac { 53 } { 480 }$$