Point on line satisfying condition

Questions asking to find a specific point on a line that satisfies a geometric condition (e.g., perpendicular to another vector, equidistant from two points).

17 questions · Standard +0.5

Sort by: Default | Easiest first | Hardest first
CAIE P3 2012 June Q10
12 marks Standard +0.8
10 Two planes, \(m\) and \(n\), have equations \(x + 2 y - 2 z = 1\) and \(2 x - 2 y + z = 7\) respectively. The line \(l\) has equation \(\mathbf { r } = \mathbf { i } + \mathbf { j } - \mathbf { k } + \lambda ( 2 \mathbf { i } + \mathbf { j } + 2 \mathbf { k } )\).
  1. Show that \(l\) is parallel to \(m\).
  2. Find the position vector of the point of intersection of \(l\) and \(n\).
  3. A point \(P\) lying on \(l\) is such that its perpendicular distances from \(m\) and \(n\) are equal. Find the position vectors of the two possible positions for \(P\) and calculate the distance between them.
    [0pt] [The perpendicular distance of a point with position vector \(x _ { 1 } \mathbf { i } + y _ { 1 } \mathbf { j } + z _ { 1 } \mathbf { k }\) from the plane \(a x + b y + c z = d\) is \(\frac { \left| a x _ { 1 } + b y _ { 1 } + c z _ { 1 } - d \right| } { \sqrt { } \left( a ^ { 2 } + b ^ { 2 } + c ^ { 2 } \right) }\).] \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE P3 2010 November Q7
9 marks Standard +0.8
7 With respect to the origin \(O\), the points \(A\) and \(B\) have position vectors given by \(\overrightarrow { O A } = \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k }\) and \(\overrightarrow { O B } = 3 \mathbf { i } + 4 \mathbf { j }\). The point \(P\) lies on the line \(A B\) and \(O P\) is perpendicular to \(A B\).
  1. Find a vector equation for the line \(A B\).
  2. Find the position vector of \(P\).
  3. Find the equation of the plane which contains \(A B\) and which is perpendicular to the plane \(O A B\), giving your answer in the form \(a x + b y + c z = d\).
CAIE P3 2011 November Q7
8 marks Standard +0.8
7 With respect to the origin \(O\), the position vectors of two points \(A\) and \(B\) are given by \(\overrightarrow { O A } = \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k }\) and \(\overrightarrow { O B } = 3 \mathbf { i } + 4 \mathbf { j }\). The point \(P\) lies on the line through \(A\) and \(B\), and \(\overrightarrow { A P } = \lambda \overrightarrow { A B }\).
  1. Show that \(\overrightarrow { O P } = ( 1 + 2 \lambda ) \mathbf { i } + ( 2 + 2 \lambda ) \mathbf { j } + ( 2 - 2 \lambda ) \mathbf { k }\).
  2. By equating expressions for \(\cos A O P\) and \(\cos B O P\) in terms of \(\lambda\), find the value of \(\lambda\) for which \(O P\) bisects the angle \(A O B\).
  3. When \(\lambda\) has this value, verify that \(A P : P B = O A : O B\).
CAIE P3 2016 November Q10
10 marks Standard +0.8
10 The line \(l\) has vector equation \(\mathbf { r } = \mathbf { i } + 2 \mathbf { j } + \mathbf { k } + \lambda ( 2 \mathbf { i } - \mathbf { j } + \mathbf { k } )\).
  1. Find the position vectors of the two points on the line whose distance from the origin is \(\sqrt { } ( 10 )\).
  2. The plane \(p\) has equation \(a x + y + z = 5\), where \(a\) is a constant. The acute angle between the line \(l\) and the plane \(p\) is equal to \(\sin ^ { - 1 } \left( \frac { 2 } { 3 } \right)\). Find the possible values of \(a\).
CAIE P3 2018 November Q10
10 marks Standard +0.3
10 The planes \(m\) and \(n\) have equations \(3 x + y - 2 z = 10\) and \(x - 2 y + 2 z = 5\) respectively. The line \(l\) has equation \(\mathbf { r } = 4 \mathbf { i } + 2 \mathbf { j } + \mathbf { k } + \lambda ( \mathbf { i } + \mathbf { j } + 2 \mathbf { k } )\).
  1. Show that \(l\) is parallel to \(m\).
  2. Calculate the acute angle between the planes \(m\) and \(n\).
  3. A point \(P\) lies on the line \(l\). The perpendicular distance of \(P\) from the plane \(n\) is equal to 2 . Find the position vectors of the two possible positions of \(P\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P3 2021 June Q8
9 marks Standard +0.3
8 With respect to the origin \(O\), the points \(A\) and \(B\) have position vectors given by \(\overrightarrow { O A } = \left( \begin{array} { l } 1 \\ 2 \\ 1 \end{array} \right)\) and \(\overrightarrow { O B } = \left( \begin{array} { r } 3 \\ 1 \\ - 2 \end{array} \right)\). The line \(l\) has equation \(\mathbf { r } = \left( \begin{array} { l } 2 \\ 3 \\ 1 \end{array} \right) + \lambda \left( \begin{array} { r } 1 \\ - 2 \\ 1 \end{array} \right)\).
  1. Find the acute angle between the directions of \(A B\) and \(l\).
  2. Find the position vector of the point \(P\) on \(l\) such that \(A P = B P\).
CAIE P3 2023 June Q9
10 marks Standard +0.3
9 The lines \(l\) and \(m\) have equations $$\begin{aligned} l : & \mathbf { r } = a \mathbf { i } + 3 \mathbf { j } + b \mathbf { k } + \lambda ( c \mathbf { i } - 2 \mathbf { j } + 4 \mathbf { k } ) \\ m : & \mathbf { r } = \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } + \mu ( 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } ) \end{aligned}$$ Relative to the origin \(O\), the position vector of the point \(P\) is \(4 \mathbf { i } + 7 \mathbf { j } - 2 \mathbf { k }\).
  1. Given that \(l\) is perpendicular to \(m\) and that \(P\) lies on \(l\), find the values of the constants \(a , b\) and \(c\). [4]
  2. The perpendicular from \(P\) meets line \(m\) at \(Q\). The point \(R\) lies on \(P Q\) extended, with \(P Q : Q R = 2 : 3\). Find the position vector of \(R\).
CAIE P3 2021 November Q10
10 marks Standard +0.3
10 With respect to the origin \(O\), the position vectors of the points \(A\) and \(B\) are given by \(\overrightarrow { O A } = \left( \begin{array} { r } 1 \\ 2 \\ - 1 \end{array} \right)\) and \(\overrightarrow { O B } = \left( \begin{array} { l } 0 \\ 3 \\ 1 \end{array} \right)\).
  1. Find a vector equation for the line \(l\) through \(A\) and \(B\).
  2. The point \(C\) lies on \(l\) and is such that \(\overrightarrow { A C } = 3 \overrightarrow { A B }\). Find the position vector of \(C\).
  3. Find the possible position vectors of the point \(P\) on \(l\) such that \(O P = \sqrt { 14 }\).
CAIE P3 2024 November Q9
10 marks Moderate -0.3
9 The position vector of point \(A\) relative to the origin \(O\) is \(\overrightarrow { O A } = 8 \mathbf { i } - 5 \mathbf { j } + 6 \mathbf { k }\).
The line \(l\) passes through \(A\) and is parallel to the vector \(2 \mathbf { i } + \mathbf { j } + 4 \mathbf { k }\).
  1. State a vector equation for \(l\).
  2. The position vector of point \(B\) relative to the origin \(O\) is \(\overrightarrow { O B } = - t \mathbf { i } + 4 t \mathbf { j } + 3 t \mathbf { k }\), where \(t\) is a constant. The line \(l\) also passes through \(B\). Find the value of \(t\).
  3. The line \(m\) has vector equation \(\mathbf { r } = 5 \mathbf { i } - \mathbf { j } + 2 \mathbf { k } + \mu ( a \mathbf { i } - \mathbf { j } + 3 \mathbf { k } )\). The acute angle between the directions of \(l\) and \(m\) is \(\theta\), where \(\cos \theta = \frac { 1 } { \sqrt { 6 } }\).
    Find the possible values of \(a\).
    \includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-18_542_559_251_753} A large cylindrical tank is used to store water. The base of the tank is a circle of radius 4 metres. At time \(t\) minutes, the depth of the water in the tank is \(h\) metres. There is a tap at the bottom of the tank. When the tap is open, water flows out of the tank at a rate proportional to the square root of the volume of water in the tank.
  4. Show that \(\frac { \mathrm { d } h } { \mathrm {~d} t } = - \lambda \sqrt { h }\), where \(\lambda\) is a positive constant.
    \includegraphics[max width=\textwidth, alt={}, center]{656df2a8-fc4d-49f3-a649-746103b4576e-18_2718_42_107_2007}
  5. At time \(t = 0\) the tap is opened. It is given that \(h = 4\) when \(t = 0\) and that \(h = 2.25\) when \(t = 20\). Solve the differential equation to obtain an expression for \(t\) in terms of \(h\), and hence find the time taken to empty the tank.
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
Edexcel P4 2022 January Q13
Standard +0.3
13
- 1
4 \end{array} \right) + \mu \left( \begin{array} { r } 5
1
- 3 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) meet and find the position vector of their point of intersection \(A\).
  2. Find the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\), giving your answer in degrees to one decimal place. A circle with centre \(A\) and radius 35 cuts the line \(l _ { 1 }\) at the points \(P\) and \(Q\). Given that the \(x\) coordinate of \(P\) is greater than the \(x\) coordinate of \(Q\),
  3. find the coordinates of \(P\) and the coordinates of \(Q\). 6. Use integration by parts to show that $$\int \mathrm { e } ^ { 2 x } \cos 3 x \mathrm {~d} x = p \mathrm { e } ^ { 2 x } \sin 3 x + q \mathrm { e } ^ { 2 x } \cos 3 x + k$$ where \(p\) and \(q\) are rational numbers to be found and \(k\) is an arbitrary constant.\\ (6)\\ 7. Water is flowing into a large container and is leaking from a hole at the base of the container. At time \(t\) seconds after the water starts to flow, the volume, \(V \mathrm {~cm} ^ { 3 }\), of water in the container is modelled by the differential equation $$\frac { \mathrm { d } V } { \mathrm {~d} t } = 300 - k V$$ where \(k\) is a constant.
  4. Solve the differential equation to show that, according to the model, $$V = \frac { 300 } { k } + A \mathrm { e } ^ { - k t }$$ where \(A\) is a constant.\\ (5) Given that the container is initially empty and that when \(t = 10\), the volume of water is increasing at a rate of \(200 \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\)
  5. find the exact value of \(k\).
  6. Hence find, according to the model, the time taken for the volume of water in the container to reach 6 litres. Give your answer to the nearest second.\\ 8. Use proof by contradiction to prove that, for all positive real numbers \(x\) and \(y\), $$\frac { 9 x } { y } + \frac { y } { x } \geqslant 6$$ 9. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{594542dd-ee2d-49b6-9fab-77b2d1a44f8c-24_632_734_214_607} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} Figure 1 shows a sketch of a closed curve with parametric equations $$x = 5 \cos \theta \quad y = 3 \sin \theta - \sin 2 \theta \quad 0 \leqslant \theta < 2 \pi$$ The region enclosed by the curve is rotated through \(\pi\) radians about the \(x\)-axis to form a solid of revolution.
  7. Show that the volume, \(V\), of the solid of revolution is given by $$V = 5 \pi \int _ { \alpha } ^ { \beta } \sin ^ { 3 } \theta ( 3 - 2 \cos \theta ) ^ { 2 } \mathrm {~d} \theta$$ where \(\alpha\) and \(\beta\) are constants to be found.
  8. Use the substitution \(u = \cos \theta\) and algebraic integration to show that \(V = k \pi\) where \(k\) is a rational number to be found. \includegraphics[max width=\textwidth, alt={}, center]{594542dd-ee2d-49b6-9fab-77b2d1a44f8c-28_2649_1889_109_178}
Edexcel P4 2022 January Q8
11 marks Moderate -0.5
8. With respect to a fixed origin \(O\) the points \(A\) and \(B\) have position vectors $$\left( \begin{array} { l } 6 \\ 6 \\ 2 \end{array} \right) \text { and } \left( \begin{array} { l } 6 \\ 0 \\ 7 \end{array} \right)$$ respectively. The line \(l _ { 1 }\) passes through the points \(A\) and \(B\).
  1. Write down an equation for \(l _ { 1 }\) Give your answer in the form \(\mathbf { r } = \mathbf { p } + \lambda \mathbf { q }\), where \(\lambda\) is a scalar parameter. The line \(l _ { 2 }\) has equation $$\mathbf { r } = \left( \begin{array} { l } 3
    1
    4 \end{array} \right) + \mu \left( \begin{array} { l } 1
    5
Edexcel P4 2023 January Q6
8 marks Standard +0.3
  1. Relative to a fixed origin \(O\).
  • the point \(A\) has position vector \(2 \mathbf { i } - 3 \mathbf { j } + 5 \mathbf { k }\)
  • the point \(B\) has position vector \(8 \mathbf { i } + 3 \mathbf { j } - 7 \mathbf { k }\)
The line \(l\) passes through \(A\) and \(B\).
    1. Find \(\overrightarrow { A B }\)
    2. Find a vector equation for the line \(l\) The point \(C\) has position vector \(3 \mathbf { i } + 5 \mathbf { j } + 2 \mathbf { k }\)
      The point \(P\) lies on \(l\)
      Given that \(\overrightarrow { C P }\) is perpendicular to \(l\)
  1. find the position vector of the point \(P\)
Edexcel P4 2024 January Q6
14 marks Standard +0.3
  1. Relative to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations
$$\begin{aligned} & l _ { 1 } : \mathbf { r } = ( 3 \mathbf { i } + p \mathbf { j } + 7 \mathbf { k } ) + \lambda ( 2 \mathbf { i } - 5 \mathbf { j } + 4 \mathbf { k } ) \\ & l _ { 2 } : \mathbf { r } = ( 8 \mathbf { i } - 2 \mathbf { j } + 5 \mathbf { k } ) + \mu ( 4 \mathbf { i } + \mathbf { j } + 2 \mathbf { k } ) \end{aligned}$$ where \(\lambda\) and \(\mu\) are scalar parameters and \(p\) is a constant.
Given that \(l _ { 1 }\) and \(l _ { 2 }\) intersect,
  1. find the value of \(p\),
  2. find the position vector of the point of intersection.
  3. Find the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\) Give your answer in degrees to one decimal place. The point \(A\) lies on \(l _ { 1 }\) with parameter \(\lambda = 2\)
    The point \(B\) lies on \(l _ { 2 }\) with \(\overrightarrow { A B }\) perpendicular to \(l _ { 2 }\)
  4. Find the coordinates of \(B\)
Edexcel P4 2020 October Q8
10 marks Standard +0.3
8. Relative to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$\begin{aligned} & l _ { 1 } : \quad \mathbf { r } = \left( \begin{array} { r } 4 \\ - 3 \\ 2 \end{array} \right) + \lambda \left( \begin{array} { r } 3 \\ - 2 \\ - 1 \end{array} \right) \quad \text { where } \lambda \text { is a scalar parameter } \\ & l _ { 2 } : \quad \mathbf { r } = \left( \begin{array} { r } 2 \\ 0 \\ - 9 \end{array} \right) + \mu \left( \begin{array} { r } 2 \\ - 1 \\ - 3 \end{array} \right) \quad \text { where } \mu \text { is a scalar parameter } \end{aligned}$$ Given that \(l _ { 1 }\) and \(l _ { 2 }\) meet at the point \(X\),
  1. find the position vector of \(X\). The point \(P ( 10 , - 7,0 )\) lies on \(l _ { 1 }\)
    The point \(Q\) lies on \(l _ { 2 }\)
    Given that \(\overrightarrow { P Q }\) is perpendicular to \(l _ { 2 }\)
  2. calculate the coordinates of \(Q\).
Edexcel AEA 2008 June Q7
22 marks Challenging +1.8
7. Relative to a fixed origin \(O\), the position vectors of the points \(A , B\) and \(C\) are $$\overrightarrow { O A } = - 3 \mathbf { i } + \mathbf { j } - 9 \mathbf { k } , \quad \overrightarrow { O B } = \mathbf { i } - \mathbf { k } , \quad \overrightarrow { O C } = 5 \mathbf { i } + 2 \mathbf { j } - 5 \mathbf { k } \text { respectively. }$$
  1. Find the cosine of angle \(A B C\). The line \(L\) is the angle bisector of angle \(A B C\).
  2. Show that an equation of \(L\) is \(\mathbf { r } = \mathbf { i } - \mathbf { k } + t ( \mathbf { i } + 2 \mathbf { j } - 7 \mathbf { k } )\).
  3. Show that \(| \overrightarrow { A B } | = | \overrightarrow { A C } |\). The circle \(S\) lies inside triangle \(A B C\) and each side of the triangle is a tangent to \(S\).
  4. Find the position vector of the centre of \(S\).
  5. Find the radius of \(S\).
Edexcel AEA 2017 June Q3
13 marks Challenging +1.3
  1. The line \(L _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { c } - 13 \\ 7 \\ - 1 \end{array} \right) + t \left( \begin{array} { c } 6 \\ - 2 \\ 3 \end{array} \right)\). The line \(L _ { 2 }\) passes through the point \(A\) with position vector \(\left( \begin{array} { c } 1 \\ p \\ 10 \end{array} \right)\) and is parallel to \(\left( \begin{array} { c } - 2 \\ 11 \\ - 5 \end{array} \right)\), where \(p\)
    is a constant. The lines \(L _ { 1 }\) and \(L _ { 2 }\) intersect at the point \(B\).
    1. Find
      1. the value of \(p\),
      2. the position vector of \(B\).
    The point \(C\) lies on \(L _ { 1 }\) and angle \(A C B\) is \(90 ^ { \circ }\)
  2. Find the position vector of \(C\). The point \(D\) also lies on \(L _ { 1 }\) and triangle \(A B D\) is isosceles with \(A B = A D\).
  3. Find the area of triangle \(A B D\).
Edexcel FP1 2021 June Q7
7 marks Challenging +1.2
  1. With respect to a fixed origin \(O\), the line \(l\) has equation
$$( \mathbf { r } - ( 12 \mathbf { i } + 16 \mathbf { j } - 8 \mathbf { k } ) ) \times ( 9 \mathbf { i } + 6 \mathbf { j } + 2 \mathbf { k } ) = \mathbf { 0 }$$ The point \(A\) lies on \(l\) such that the direction cosines of \(\overrightarrow { O A }\) with respect to the \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) axes are \(\frac { 3 } { 7 } , \beta\) and \(\gamma\). Determine the coordinates of the point \(A\).