7 With respect to the origin \(O\), the position vectors of two points \(A\) and \(B\) are given by \(\overrightarrow { O A } = \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k }\) and \(\overrightarrow { O B } = 3 \mathbf { i } + 4 \mathbf { j }\). The point \(P\) lies on the line through \(A\) and \(B\), and \(\overrightarrow { A P } = \lambda \overrightarrow { A B }\).
- Show that \(\overrightarrow { O P } = ( 1 + 2 \lambda ) \mathbf { i } + ( 2 + 2 \lambda ) \mathbf { j } + ( 2 - 2 \lambda ) \mathbf { k }\).
- By equating expressions for \(\cos A O P\) and \(\cos B O P\) in terms of \(\lambda\), find the value of \(\lambda\) for which \(O P\) bisects the angle \(A O B\).
- When \(\lambda\) has this value, verify that \(A P : P B = O A : O B\).