8. With respect to a fixed origin \(O\) the points \(A\) and \(B\) have position vectors
$$\left( \begin{array} { l }
6
6
2
\end{array} \right) \text { and } \left( \begin{array} { l }
6
0
7
\end{array} \right)$$
respectively.
The line \(l _ { 1 }\) passes through the points \(A\) and \(B\).
- Write down an equation for \(l _ { 1 }\)
Give your answer in the form \(\mathbf { r } = \mathbf { p } + \lambda \mathbf { q }\), where \(\lambda\) is a scalar parameter.
The line \(l _ { 2 }\) has equation
$$\mathbf { r } = \left( \begin{array} { l }
3
1
4
\end{array} \right) + \mu \left( \begin{array} { l }
1
5