Triangle and parallelogram areas

Questions requiring calculation of areas of triangles or parallelograms using vector methods (cross product or scalar product with trigonometry).

12 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE P1 2014 June Q7
8 marks Standard +0.3
7 The position vectors of points \(A , B\) and \(C\) relative to an origin \(O\) are given by $$\overrightarrow { O A } = \left( \begin{array} { l } 2 \\ 1 \\ 3 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { r } 6 \\ - 1 \\ 7 \end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { l } 2 \\ 4 \\ 7 \end{array} \right)$$
  1. Show that angle \(B A C = \cos ^ { - 1 } \left( \frac { 1 } { 3 } \right)\).
  2. Use the result in part (i) to find the exact value of the area of triangle \(A B C\).
CAIE P3 2020 June Q8
10 marks Standard +0.3
8 Relative to the origin \(O\), the points \(A , B\) and \(D\) have position vectors given by $$\overrightarrow { O A } = \mathbf { i } + 2 \mathbf { j } + \mathbf { k } , \quad \overrightarrow { O B } = 2 \mathbf { i } + 5 \mathbf { j } + 3 \mathbf { k } \quad \text { and } \quad \overrightarrow { O D } = 3 \mathbf { i } + 2 \mathbf { k }$$ A fourth point \(C\) is such that \(A B C D\) is a parallelogram.
  1. Find the position vector of \(C\) and verify that the parallelogram is not a rhombus.
  2. Find angle \(B A D\), giving your answer in degrees.
  3. Find the area of the parallelogram correct to 3 significant figures.
CAIE P3 2023 June Q6
10 marks Moderate -0.3
6 Relative to the origin \(O\), the points \(A , B\) and \(C\) have position vectors given by $$\overrightarrow { O A } = \left( \begin{array} { l } 2 \\ 1 \\ 3 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { l } 4 \\ 3 \\ 2 \end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { r } 3 \\ - 2 \\ - 4 \end{array} \right) .$$ The quadrilateral \(A B C D\) is a parallelogram.
  1. Find the position vector of \(D\).
  2. The angle between \(B A\) and \(B C\) is \(\theta\). Find the exact value of \(\cos \theta\).
  3. Hence find the area of \(A B C D\), giving your answer in the form \(p \sqrt { q }\), where \(p\) and \(q\) are integers.
CAIE P3 2024 March Q9
8 marks Standard +0.3
9 Relative to the origin \(O\), the position vectors of the points \(A , B\) and \(C\) are given by $$\overrightarrow { \mathrm { OA } } = 5 \mathbf { i } - 2 \mathbf { j } + \mathbf { k } , \quad \overrightarrow { \mathrm { OB } } = 8 \mathbf { i } + 2 \mathbf { j } - 6 \mathbf { k } \quad \text { and } \quad \overrightarrow { \mathrm { OC } } = 3 \mathbf { i } + 4 \mathbf { j } - 7 \mathbf { k }$$
  1. Show that \(O A B C\) is a rectangle.
    \includegraphics[max width=\textwidth, alt={}, center]{446573d3-73b1-482a-a3f6-1abddfdd90d0-14_67_1573_557_324}
    \includegraphics[max width=\textwidth, alt={}, center]{446573d3-73b1-482a-a3f6-1abddfdd90d0-14_68_1575_648_322}
    \includegraphics[max width=\textwidth, alt={}]{446573d3-73b1-482a-a3f6-1abddfdd90d0-14_70_1573_737_324} ....................................................................................................................................... .........................................................................................................................................
  2. Use a scalar product to find the acute angle between the diagonals of \(O A B C\).
CAIE P3 2024 November Q6
7 marks Standard +0.3
6 The lines \(l\) and \(m\) have vector equations $$l : \quad \mathbf { r } = 2 \mathbf { i } + \mathbf { j } - 3 \mathbf { k } + \lambda ( - \mathbf { i } + 2 \mathbf { k } ) \quad \text { and } \quad m : \quad \mathbf { r } = 2 \mathbf { i } + \mathbf { j } - 3 \mathbf { k } + \mu ( 2 \mathbf { i } - \mathbf { j } + 5 \mathbf { k } ) .$$ Lines \(l\) and \(m\) intersect at the point \(P\).
  1. State the coordinates of \(P\).
  2. Find the exact value of the cosine of the acute angle between \(l\) and \(m\).
  3. The point \(A\) on line \(I\) has coordinates ( \(0,1,1\) ). The point \(B\) on line \(m\) has coordinates ( \(0,2 , - 8\) ). Find the exact area of triangle \(A P B\).
Edexcel C34 2017 January Q14
11 marks Standard +0.3
  1. \(A B C D\) is a parallelogram with \(A B\) parallel to \(D C\) and \(A D\) parallel to \(B C\). The position vectors of \(A , B , C\), and \(D\) relative to a fixed origin \(O\) are \(\mathbf { a } , \mathbf { b } , \mathbf { c }\) and \(\mathbf { d }\) respectively.
Given that $$\mathbf { a } = \mathbf { i } + \mathbf { j } - 2 \mathbf { k } , \quad \mathbf { b } = 3 \mathbf { i } - \mathbf { j } + 6 \mathbf { k } , \quad \mathbf { c } = - \mathbf { i } + 3 \mathbf { j } + 6 \mathbf { k }$$
  1. find the position vector \(\mathbf { d }\),
  2. find the angle between the sides \(A B\) and \(B C\) of the parallelogram,
  3. find the area of the parallelogram \(A B C D\). The point \(E\) lies on the line through the points \(C\) and \(D\), so that \(D\) is the midpoint of \(C E\).
  4. Use your answer to part (c) to find the area of the trapezium \(A B C E\).
Edexcel C34 2017 June Q9
8 marks Standard +0.3
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{29b56d51-120a-4275-a761-8b8aed7bca54-28_615_328_210_808} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of a triangle \(A B C\).
Given \(\overrightarrow { A B } = 2 \mathbf { i } + 3 \mathbf { j } - 2 \mathbf { k }\) and \(\overrightarrow { A C } = 5 \mathbf { i } - 6 \mathbf { j } + \mathbf { k }\),
  1. find the size of angle \(C A B\), giving your answer in degrees to 2 decimal places,
  2. find the area of triangle \(A B C\), giving your answer to 2 decimal places. Using your answer to part (b), or otherwise,
  3. find the shortest distance from \(A\) to \(B C\), giving your answer to 2 decimal places.
Edexcel P4 2021 January Q2
5 marks Standard +0.3
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{216f5735-a7ad-4d70-9da9-ae1f098a97d9-04_511_506_264_721} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of parallelogram \(A B C D\).
Given that \(\overrightarrow { A B } = 6 \mathbf { i } - 2 \mathbf { j } + 3 \mathbf { k }\) and \(\overrightarrow { B C } = 2 \mathbf { i } + 5 \mathbf { j } + 8 \mathbf { k }\)
  1. find the size of angle \(A B C\), giving your answer in degrees, to 2 decimal places.
  2. Find the area of parallelogram \(A B C D\), giving your answer to one decimal place.
Edexcel P4 2022 June Q6
9 marks Standard +0.3
  1. Relative to a fixed origin \(O\),
  • the point \(A\) has position vector \(\quad \mathbf { i } - 4 \mathbf { j } + 3 \mathbf { k }\)
  • the point \(B\) has position vector \(5 \mathbf { i } + 3 \mathbf { j } - 2 \mathbf { k }\)
  • the point \(C\) has position vector \(3 \mathbf { i } + p \mathbf { j } - \mathbf { k }\)
    where \(p\) is a constant.
    The line \(l\) passes through \(A\) and \(B\).
    1. Find a vector equation for the line \(l\)
Given that \(\overrightarrow { A C }\) is perpendicular to \(l\)
  • find the value of \(p\)
  • Hence find the area of triangle \(A B C\), giving your answer as a surd in simplest form.
  • Edexcel P4 2023 October Q6
    10 marks Standard +0.8
    1. The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2 \\ 3 \\ - 7 \end{array} \right) + \lambda \left( \begin{array} { l } 1 \\ 2 \\ 2 \end{array} \right)\) where \(\lambda\) is a scalar parameter.
    The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2 \\ 3 \\ - 7 \end{array} \right) + \mu \left( \begin{array} { r } 4 \\ - 1 \\ 8 \end{array} \right)\) where \(\mu\) is a scalar parameter.
    Given that \(l _ { 1 }\) and \(l _ { 2 }\) meet at the point \(P\)
    1. state the coordinates of \(P\) Given that the angle between lines \(l _ { 1 }\) and \(l _ { 2 }\) is \(\theta\)
    2. find the value of \(\cos \theta\), giving the answer as a fully simplified fraction. The point \(Q\) lies on \(l _ { 1 }\) where \(\lambda = 6\)
      Given that point \(R\) lies on \(l _ { 2 }\) such that triangle \(Q P R\) is an isosceles triangle with \(P Q = P R\)
    3. find the exact area of triangle \(Q P R\)
    4. find the coordinates of the possible positions of point \(R\)
    OCR C4 2006 June Q4
    8 marks Moderate -0.3
    4 The position vectors of three points \(A , B\) and \(C\) relative to an origin \(O\) are given respectively by and $$\begin{aligned} & \overrightarrow { O A } = 7 \mathbf { i } + 3 \mathbf { j } - 3 \mathbf { k } \\ & \overrightarrow { O B } = 4 \mathbf { i } + 2 \mathbf { j } - 4 \mathbf { k } \\ & \overrightarrow { O C } = 5 \mathbf { i } + 4 \mathbf { j } - 5 \mathbf { k } \end{aligned}$$
    1. Find the angle between \(A B\) and \(A C\).
    2. Find the area of triangle \(A B C\).
    Edexcel AEA 2007 June Q7
    20 marks Challenging +1.8
    7.The points \(O , P\) and \(Q\) lie on a circle \(C\) with diameter \(O Q\) .The position vectors of \(P\) and \(Q\) , relative to \(O\) ,are \(\mathbf { p }\) and \(\mathbf { q }\) respectively.
    (a)Prove that \(\mathbf { p } . \mathbf { q } = | \mathbf { p } | ^ { 2 }\) . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{f2290882-b9a4-43ec-a38f-c44d46477242-6_615_714_412_689} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} The point \(R\) also lies on \(C\) and \(O P Q R\) is a kite \(K\) as shown in Figure 3.The point \(S\) has position vector,relative to \(O\) ,of \(\lambda \mathbf { q }\) ,where \(\lambda\) is a constant.Given that \(\mathbf { p } = \mathbf { i } + 2 \mathbf { j } - \mathbf { k } , \mathbf { q } = 2 \mathbf { i } + \mathbf { j } - 2 \mathbf { k }\) and that \(O Q\) is perpendicular to \(P S\) ,find
    (b)the value of \(\lambda\) ,
    (c)the position vector of \(R\) ,
    (d)the area of \(K\) . Another circle \(C _ { 1 }\) is drawn inside \(K\) so that the 4 sides of the kite are each tangents to \(C _ { 1 }\) .
    (e)Find the radius of \(C _ { 1 }\) giving your answer in the form \(( \sqrt { } 2 - 1 ) \sqrt { } n\) ,where \(n\) is an integer. A second kite \(K _ { 1 }\) is similar to \(K\) and is drawn inside \(C _ { 1 }\) .
    (f)Find that area of \(K _ { 1 }\) .