Area of region with line boundary

Questions finding the area of a region bounded by a polar curve, the initial line, and one or more half-lines θ=constant, often involving integration.

43 questions · Challenging +1.0

Sort by: Default | Easiest first | Hardest first
CAIE FP1 2003 November Q1
6 marks Challenging +1.2
1
\includegraphics[max width=\textwidth, alt={}, center]{653d57aa-7775-4063-a8c9-11c8bc964fae-2_566_606_264_772} The curve \(C\) has polar equation $$r = \theta ^ { \frac { 1 } { 2 } } \mathrm { e } ^ { \theta ^ { 2 } / \pi }$$ where \(0 \leqslant \theta \leqslant \pi\). The area of the finite region bounded by \(C\) and the line \(\theta = \beta\) is \(\pi\) (see diagram). Show that $$\beta = ( \pi \ln 3 ) ^ { \frac { 1 } { 2 } }$$
CAIE FP1 2006 November Q7
8 marks Challenging +1.2
7 The curve \(C\) has equation $$r = 10 \ln ( 1 + \theta )$$ where \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). Draw a sketch of \(C\). Use the substitution \(w = \ln ( 1 + \theta )\) to show that the area of the sector bounded by the line \(\theta = \frac { 1 } { 2 } \pi\) and the arc of \(C\) joining the origin to the point where \(\theta = \frac { 1 } { 2 } \pi\) is $$50 \left( b ^ { 2 } - 2 b + 2 \right) \mathrm { e } ^ { b } - 100$$ where \(b = \ln \left( 1 + \frac { 1 } { 2 } \pi \right)\).
CAIE FP1 2008 November Q3
6 marks Standard +0.8
3 The curve \(C\) has polar equation $$r = \left( \frac { 1 } { 2 } \pi - \theta \right) ^ { 2 } ,$$ where \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). Draw a sketch of \(C\). Find the area of the region bounded by \(C\) and the initial line, leaving your answer in terms of \(\pi\).
CAIE FP1 2011 November Q8
10 marks Challenging +1.2
8 The curve \(C\) has polar equation \(r = 1 + \sin \theta\) for \(- \frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). Draw a sketch of \(C\). The area of the region enclosed by the initial line, the half-line \(\theta = \frac { 1 } { 2 } \pi\), and the part of \(C\) for which \(\theta\) is positive, is denoted by \(A _ { 1 }\). The area of the region enclosed by the initial line, and the part of \(C\) for which \(\theta\) is negative, is denoted by \(A _ { 2 }\). Find the ratio \(A _ { 1 } : A _ { 2 }\), giving your answer correct to 1 decimal place.
CAIE FP1 2017 Specimen Q11 OR
Standard +0.8
The curve \(C\) has polar equation \(r = a ( 1 - \cos \theta )\) for \(0 \leqslant \theta < 2 \pi\).
  1. Sketch \(C\).
  2. Find the area of the region enclosed by the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\), the half-line \(\theta = \frac { 1 } { 2 } \pi\) and the half-line \(\theta = \frac { 3 } { 2 } \pi\).
  3. Show that $$\left( \frac { \mathrm { d } s } { \mathrm {~d} \theta } \right) ^ { 2 } = 4 a ^ { 2 } \sin ^ { 2 } \left( \frac { 1 } { 2 } \theta \right)$$ where \(s\) denotes arc length, and find the length of the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\).
CAIE FP1 2011 November Q10
13 marks Challenging +1.2
10 The curve \(C\) has polar equation \(r = 3 + 2 \cos \theta\), for \(- \pi < \theta \leqslant \pi\). The straight line \(l\) has polar equation \(r \cos \theta = 2\). Sketch both \(C\) and \(l\) on a single diagram. Find the polar coordinates of the points of intersection of \(C\) and \(l\). The region \(R\) is enclosed by \(C\) and \(l\), and contains the pole. Find the area of \(R\).
CAIE FP1 2012 November Q5
6 marks Standard +0.3
5 The curve \(C\) has polar equation \(r = 1 + 2 \cos \theta\). Sketch the curve for \(- \frac { 2 } { 3 } \pi \leqslant \theta < \frac { 2 } { 3 } \pi\). Find the area bounded by \(C\) and the half-lines \(\theta = - \frac { 1 } { 3 } \pi , \theta = \frac { 1 } { 3 } \pi\).
CAIE FP1 2013 November Q1
5 marks Standard +0.3
1 The curve \(C\) has polar equation \(r = 2 \mathrm { e } ^ { \theta }\), for \(\frac { 1 } { 6 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). Find
  1. the area of the region bounded by the half-lines \(\theta = \frac { 1 } { 6 } \pi , \theta = \frac { 1 } { 2 } \pi\) and \(C\),
  2. the length of \(C\).
CAIE FP1 2015 November Q11 OR
Standard +0.8
The curve \(C\) has polar equation \(r = a ( 1 - \cos \theta )\) for \(0 \leqslant \theta < 2 \pi\). Sketch \(C\). Find the area of the region enclosed by the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\), the half-line \(\theta = \frac { 1 } { 2 } \pi\) and the half-line \(\theta = \frac { 3 } { 2 } \pi\). Show that $$\left( \frac { \mathrm { d } s } { \mathrm {~d} \theta } \right) ^ { 2 } = 4 a ^ { 2 } \sin ^ { 2 } \left( \frac { 1 } { 2 } \theta \right) ,$$ where \(s\) denotes arc length, and find the length of the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series.
Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
AQA FP3 2008 January Q2
9 marks Challenging +1.2
2 The diagram shows a sketch of part of the curve \(C\) whose polar equation is \(r = 1 + \tan \theta\). The point \(O\) is the pole.
\includegraphics[max width=\textwidth, alt={}, center]{0c177d90-02ae-4e91-bc9d-d0c7051799b8-3_561_629_406_772} The points \(P\) and \(Q\) on the curve are given by \(\theta = 0\) and \(\theta = \frac { \pi } { 3 }\) respectively.
  1. Show that the area of the region bounded by the curve \(C\) and the lines \(O P\) and \(O Q\) is $$\frac { 1 } { 2 } \sqrt { 3 } + \ln 2$$ (6 marks)
  2. Hence find the area of the shaded region bounded by the line \(P Q\) and the arc \(P Q\) of \(C\).
AQA FP3 2010 January Q8
16 marks Challenging +1.2
8 The diagram shows a sketch of a curve \(C\) and a line \(L\), which is parallel to the initial line and touches the curve at the points \(P\) and \(Q\).
\includegraphics[max width=\textwidth, alt={}, center]{32de7ef6-b7aa-4bfd-a73a-e12bfc0147e2-5_506_762_447_639} The polar equation of the curve \(C\) is $$r = 4 ( 1 - \sin \theta ) , \quad 0 \leqslant \theta < 2 \pi$$ and the polar equation of the line \(L\) is $$r \sin \theta = 1$$
  1. Show that the polar coordinates of \(P\) are \(\left( 2 , \frac { \pi } { 6 } \right)\) and find the polar coordinates of \(Q\).
  2. Find the area of the shaded region \(R\) bounded by the line \(L\) and the curve \(C\). Give your answer in the form \(m \sqrt { 3 } + n \pi\), where \(m\) and \(n\) are integers.
AQA FP3 2008 June Q8
14 marks Challenging +1.2
8 The polar equation of a curve \(C\) is $$r = 5 + 2 \cos \theta , \quad - \pi \leqslant \theta \leqslant \pi$$
  1. Verify that the points \(A\) and \(B\), with polar coordinates ( 7,0 ) and ( \(3 , \pi\) ) respectively, lie on the curve \(C\).
  2. Sketch the curve \(C\).
  3. Find the area of the region bounded by the curve \(C\).
  4. The point \(P\) is the point on the curve \(C\) for which \(\theta = \alpha\), where \(0 < \alpha \leqslant \frac { \pi } { 2 }\). The point \(Q\) lies on the curve such that \(P O Q\) is a straight line, where the point \(O\) is the pole. Find, in terms of \(\alpha\), the area of triangle \(O Q B\).
AQA FP3 2016 June Q8
17 marks Challenging +1.2
8 The diagram shows the sketch of part of a curve, the pole \(O\) and the initial line.
\includegraphics[max width=\textwidth, alt={}, center]{0b9b947d-824b-4d3a-b66d-4bfd8d49be17-20_609_670_358_703} The polar equation of the curve is \(r = 1 + \tan \theta\).
The point \(A\) is the point on the curve at which \(\theta = \frac { \pi } { 3 }\).
The perpendicular, \(A N\), from \(A\) to the initial line intersects the curve at the point \(B\).
  1. Find the exact length of \(O A\).
    1. Given that, at the point \(B , \theta = \alpha\), show that \(( \cos \alpha + \sin \alpha ) ^ { 2 } = 1 + \frac { \sqrt { 3 } } { 2 }\).
    2. Hence, or otherwise, find \(\alpha\) in terms of \(\pi\).
  2. Show that the area of triangle \(O A B\) is \(\frac { 3 + 2 \sqrt { 3 } } { 6 }\).
  3. Find, in an exact simplified form, the area of the shaded region bounded by the curve and the line segment \(A B\).
    [0pt] [7 marks]
    \includegraphics[max width=\textwidth, alt={}]{0b9b947d-824b-4d3a-b66d-4bfd8d49be17-23_2488_1709_219_153}
    \section*{DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED}
AQA Further Paper 2 Specimen Q11
4 marks Challenging +1.8
11 The diagram shows a sketch of a curve \(C\), the pole \(O\) and the initial line.
\includegraphics[max width=\textwidth, alt={}, center]{21084ed7-43f8-47c6-80c2-930ccf340d37-14_622_978_374_571} The polar equation of \(C\) is \(r = 4 + 2 \cos \theta , \quad - \pi \leq \theta \leq \pi\) 11
  1. Show that the area of the region bounded by the curve \(C\) is \(18 \pi\)
    11
  2. Points \(A\) and \(B\) lie on the curve \(C\) such that \(- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 }\) and \(A O B\) is an equilateral triangle. Find the polar equation of the line segment \(A B\)
    [0pt] [4 marks]
    \(12 \quad \mathbf { M } = \left[ \begin{array} { r r r } - 1 & 2 & - 1 \\ 2 & 2 & - 2 \\ - 1 & - 2 & - 1 \end{array} \right]\)
Edexcel CP1 Specimen Q4
9 marks Challenging +1.2
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3b36bdc3-a68d-4982-bf23-f780773df5cc-08_492_1063_214_502} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve \(C\) shown in Figure 1 has polar equation $$r = 4 + \cos 2 \theta \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 }$$ At the point \(A\) on \(C\), the value of \(r\) is \(\frac { 9 } { 2 }\)
The point \(N\) lies on the initial line and \(A N\) is perpendicular to the initial line.
The finite region \(R\), shown shaded in Figure 1, is bounded by the curve \(C\), the initial line and the line \(A N\). Find the exact area of the shaded region \(R\), giving your answer in the form \(p \pi + q \sqrt { 3 }\) where \(p\) and \(q\) are rational numbers to be found.
Edexcel CP2 2023 June Q1
4 marks Challenging +1.8
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{59a57888-8aa8-4ed8-b704-ebf3980c0344-02_300_1006_242_532} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with polar equation $$r = 2 \sqrt { \sinh \theta + \cosh \theta } \quad 0 \leqslant \theta \leqslant \pi$$ The region \(R\), shown shaded in Figure 1, is bounded by the initial line, the curve and the line with equation \(\theta = \pi\) Use algebraic integration to determine the exact area of \(R\) giving your answer in the form \(p \mathrm { e } ^ { q } - r\) where \(p , q\) and \(r\) are real numbers to be found.
AQA Further Paper 1 2024 June Q16
9 marks
16 The curve \(C\) has polar equation \(r = 2 + \tan \theta\) The curve \(C\) meets the line \(\theta = \frac { \pi } { 4 }\) at the point \(A\)
The point \(B\) has polar coordinates \(( 4,0 )\)
The diagram shows part of the curve \(C\), and the points \(A\) and \(B\)
\includegraphics[max width=\textwidth, alt={}, center]{9a2f64fb-71d1-4140-b701-c9fbb5b3891c-22_515_1168_575_427} 16
  1. Show that the area of triangle \(O A B\) is \(3 \sqrt { 2 }\) units.
    16
  2. Find the area of the shaded region.
    Give your answer in an exact form.
AQA Further Paper 2 2021 June Q9
14 marks Challenging +1.8
9
  1. The line \(L\) has polar equation $$r = \frac { 7 } { 4 } \sec \theta \quad \left( - \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 } \right)$$ Show that \(L\) is perpendicular to the initial line.
    9
  2. The curve \(C\) has polar equation $$r = 3 + \cos \theta \quad ( - \pi < \theta \leq \pi )$$ Find the polar coordinates of the points of intersection of \(L\) and \(C\) Fully justify your answer.
    9
  3. The region \(R\) is the set of points such that
    and $$r > \frac { 7 } { 4 } \sec \theta$$ Find the exact area of \(R\) $$r < 3 + \cos \theta$$ Find the exact area of \(R\)
    [0pt] [7 marks]