AQA Further Paper 2 Specimen — Question 11 4 marks

Exam BoardAQA
ModuleFurther Paper 2 (Further Paper 2)
SessionSpecimen
Marks4
TopicPolar coordinates

11 The diagram shows a sketch of a curve \(C\), the pole \(O\) and the initial line.
\includegraphics[max width=\textwidth, alt={}, center]{21084ed7-43f8-47c6-80c2-930ccf340d37-14_622_978_374_571} The polar equation of \(C\) is \(r = 4 + 2 \cos \theta , \quad - \pi \leq \theta \leq \pi\) 11
  1. Show that the area of the region bounded by the curve \(C\) is \(18 \pi\)
    11
  2. Points \(A\) and \(B\) lie on the curve \(C\) such that \(- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 }\) and \(A O B\) is an equilateral triangle. Find the polar equation of the line segment \(A B\)
    [0pt] [4 marks]
    \(12 \quad \mathbf { M } = \left[ \begin{array} { r r r } - 1 & 2 & - 1
    2 & 2 & - 2
    - 1 & - 2 & - 1 \end{array} \right]\)