Roots with given sum conditions

A question is this type if and only if it gives specific conditions on sums involving roots (like α² + β² + γ² = k or α + β = γ) and asks to find coefficients or other properties.

11 questions · Standard +0.7

Sort by: Default | Easiest first | Hardest first
OCR MEI FP1 2011 June Q3
5 marks Standard +0.8
3 The equation \(x ^ { 3 } + p x ^ { 2 } + q x + 3 = 0\) has roots \(\alpha , \beta\) and \(\gamma\), where $$\begin{gathered} \alpha + \beta + \gamma = 4 \\ \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 6 \end{gathered}$$ Find \(p\) and \(q\).
OCR MEI FP1 2015 June Q3
6 marks Moderate -0.3
3 The equation \(2 \mathrm { x } ^ { 3 } + \mathrm { px } ^ { 2 } + \mathrm { qx } + \mathrm { r } = 0\) has a root at \(x = 4\). The sum of the roots is 6 and the product of the roots is - 10 . Find \(p , q\) and \(r\).
CAIE FP1 2017 Specimen Q5
8 marks Standard +0.8
5 The cubic equation \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers, has roots \(\alpha , \beta\) and \(\gamma\), such that $$\begin{aligned} \alpha + \beta + \gamma & = 15 \\ \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 83 \end{aligned}$$
  1. Write down the value of \(p\) and find the value of \(q\).
  2. Given that \(\alpha , \beta\) and \(\gamma\) are all real and that \(\alpha \beta + \alpha \gamma = 36\), find \(\alpha\) and hence find the value of \(r\). [5]
CAIE FP1 2015 November Q5
8 marks Challenging +1.2
5 The cubic equation \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers, has roots \(\alpha , \beta\) and \(\gamma\), such that $$\begin{aligned} \alpha + \beta + \gamma & = 15 , \\ \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 83 . \end{aligned}$$ Write down the value of \(p\) and find the value of \(q\). Given that \(\alpha , \beta\) and \(\gamma\) are all real and that \(\alpha \beta + \alpha \gamma = 36\), find \(\alpha\) and hence find the value of \(r\).
CAIE FP1 2015 November Q5
8 marks Standard +0.8
5 The cubic equation \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers, has roots \(\alpha , \beta\) and \(\gamma\), such that $$\begin{aligned} \alpha + \beta + \gamma & = 15 \\ \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 83 \end{aligned}$$ Write down the value of \(p\) and find the value of \(q\). Given that \(\alpha , \beta\) and \(\gamma\) are all real and that \(\alpha \beta + \alpha \gamma = 36\), find \(\alpha\) and hence find the value of \(r\).
AQA FP2 2012 January Q7
12 marks
7 The numbers \(\alpha , \beta\) and \(\gamma\) satisfy the equations $$\begin{aligned} & \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = - 10 - 12 \mathrm { i } \\ & \alpha \beta + \beta \gamma + \gamma \alpha = 5 + 6 \mathrm { i } \end{aligned}$$
  1. Show that \(\alpha + \beta + \gamma = 0\).
  2. The numbers \(\alpha , \beta\) and \(\gamma\) are also the roots of the equation $$z ^ { 3 } + p z ^ { 2 } + q z + r = 0$$ Write down the value of \(p\) and the value of \(q\).
  3. It is also given that \(\alpha = 3 \mathrm { i }\).
    1. Find the value of \(r\).
    2. Show that \(\beta\) and \(\gamma\) are the roots of the equation $$z ^ { 2 } + 3 \mathrm { i } z - 4 + 6 \mathrm { i } = 0$$
    3. Given that \(\beta\) is real, find the values of \(\beta\) and \(\gamma\).
AQA FP2 2013 January Q4
9 marks Standard +0.8
4 The roots of the equation $$z ^ { 3 } - 5 z ^ { 2 } + k z - 4 = 0$$ are \(\alpha , \beta\) and \(\gamma\).
    1. Write down the value of \(\alpha + \beta + \gamma\) and the value of \(\alpha \beta \gamma\).
    2. Hence find the value of \(\alpha ^ { 2 } \beta \gamma + \alpha \beta ^ { 2 } \gamma + \alpha \beta \gamma ^ { 2 }\).
  1. The value of \(\alpha ^ { 2 } \beta ^ { 2 } + \beta ^ { 2 } \gamma ^ { 2 } + \gamma ^ { 2 } \alpha ^ { 2 }\) is - 4 .
    1. Explain why \(\alpha , \beta\) and \(\gamma\) cannot all be real.
    2. By considering \(( \alpha \beta + \beta \gamma + \gamma \alpha ) ^ { 2 }\), find the possible values of \(k\).
AQA FP2 2008 June Q3
12 marks Standard +0.8
3 The cubic equation $$z ^ { 3 } + q z + ( 18 - 12 i ) = 0$$ where \(q\) is a complex number, has roots \(\alpha , \beta\) and \(\gamma\).
  1. Write down the value of:
    1. \(\alpha \beta \gamma\);
    2. \(\alpha + \beta + \gamma\).
  2. Given that \(\beta + \gamma = 2\), find the value of:
    1. \(\alpha\);
    2. \(\quad \beta \gamma\);
    3. \(q\).
  3. Given that \(\beta\) is of the form \(k \mathrm { i }\), where \(k\) is real, find \(\beta\) and \(\gamma\).
AQA FP2 2010 June Q4
13 marks Standard +0.8
4 The roots of the cubic equation $$z ^ { 3 } - 2 z ^ { 2 } + p z + 10 = 0$$ are \(\alpha , \beta\) and \(\gamma\).
It is given that \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = - 4\).
  1. Write down the value of \(\alpha + \beta + \gamma\).
    1. Explain why \(\alpha ^ { 3 } - 2 \alpha ^ { 2 } + p \alpha + 10 = 0\).
    2. Hence show that $$\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = p + 13$$
    3. Deduce that \(p = - 3\).
    1. Find the real root \(\alpha\) of the cubic equation \(z ^ { 3 } - 2 z ^ { 2 } - 3 z + 10 = 0\).
    2. Find the values of \(\beta\) and \(\gamma\).
Edexcel CP2 2022 June Q6
10 marks
  1. The cubic equation
$$4 x ^ { 3 } + p x ^ { 2 } - 14 x + q = 0$$ where \(p\) and \(q\) are real positive constants, has roots \(\alpha , \beta\) and \(\gamma\)
Given that \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 16\)
  1. show that \(p = 12\) Given that \(\frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma } = \frac { 14 } { 3 }\)
  2. determine the value of \(q\) Without solving the cubic equation,
  3. determine the value of \(( \alpha - 1 ) ( \beta - 1 ) ( \gamma - 1 )\)
AQA FP2 2006 June Q5
13 marks Standard +0.8
5 The cubic equation $$z ^ { 3 } - 4 \mathrm { i } z ^ { 2 } + q z - ( 4 - 2 \mathrm { i } ) = 0$$ where \(q\) is a complex number, has roots \(\alpha , \beta\) and \(\gamma\).
  1. Write down the value of:
    1. \(\alpha + \beta + \gamma\);
    2. \(\alpha \beta \gamma\).
  2. Given that \(\alpha = \beta + \gamma\), show that:
    1. \(\alpha = 2 \mathrm { i }\);
    2. \(\quad \beta \gamma = - ( 1 + 2 \mathrm { i } )\);
    3. \(\quad q = - ( 5 + 2 \mathrm { i } )\).
  3. Show that \(\beta\) and \(\gamma\) are the roots of the equation $$z ^ { 2 } - 2 \mathrm { i } z - ( 1 + 2 \mathrm { i } ) = 0$$
  4. Given that \(\beta\) is real, find \(\beta\) and \(\gamma\).