Symmetric functions of roots

A question is this type if and only if it asks to evaluate symmetric expressions involving roots (like αβ + βγ + γα, or products/sums of specific combinations) without solving the equation.

23 questions · Standard +0.1

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 1 2024 June Q1
6 marks Standard +0.8
1 The cubic equation \(2 x ^ { 3 } + x ^ { 2 } - p x - 5 = 0\), where \(p\) is a positive constant, has roots \(\alpha , \beta , \gamma\).
  1. State, in terms of \(p\), the value of \(\alpha \beta + \beta \gamma + \gamma \alpha\).
  2. Find the value of \(\alpha ^ { 2 } \beta \gamma + \alpha \beta ^ { 2 } \gamma + \alpha \beta \gamma ^ { 2 }\).
  3. Deduce a cubic equation whose roots are \(\alpha \beta , \beta \gamma , \alpha \gamma\).
  4. Given that \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = \frac { 1 } { 3 }\), find the value of \(p\).
CAIE Further Paper 1 2024 November Q3
10 marks Standard +0.8
3 It is given that $$\begin{aligned} & \alpha + \beta + \gamma + \delta = 2 \\ & \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } + \delta ^ { 2 } = 3 \\ & \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } + \delta ^ { 3 } = 4 \end{aligned}$$
  1. Find the value of \(\alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta\).
  2. Find the value of \(\alpha ^ { 2 } \beta + \alpha ^ { 2 } \gamma + \alpha ^ { 2 } \delta + \beta ^ { 2 } \alpha + \beta ^ { 2 } \gamma + \beta ^ { 2 } \delta + \gamma ^ { 2 } \alpha + \gamma ^ { 2 } \beta + \gamma ^ { 2 } \delta + \delta ^ { 2 } \alpha + \delta ^ { 2 } \beta + \delta ^ { 2 } \gamma\).
    \includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-06_2717_33_109_2014}
    \includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-07_2723_33_99_22}
  3. It is given that \(\alpha , \beta , \gamma , \delta\) are the roots of the equation $$6 x ^ { 4 } - 12 x ^ { 3 } + 3 x ^ { 2 } + 2 x + 6 = 0 .$$
    1. Find the value of \(\alpha ^ { 4 } + \beta ^ { 4 } + \gamma ^ { 4 } + \delta ^ { 4 }\).
    2. Find the value of \(\alpha ^ { 5 } + \beta ^ { 5 } + \gamma ^ { 5 } + \delta ^ { 5 }\).
OCR FP1 2006 January Q10
11 marks Standard +0.3
10 The roots of the equation $$x ^ { 3 } - 9 x ^ { 2 } + 27 x - 29 = 0$$ are denoted by \(\alpha , \beta\) and \(\gamma\), where \(\alpha\) is real and \(\beta\) and \(\gamma\) are complex.
  1. Write down the value of \(\alpha + \beta + \gamma\).
  2. It is given that \(\beta = p + \mathrm { i } q\), where \(q > 0\). Find the value of \(p\), in terms of \(\alpha\).
  3. Write down the value of \(\alpha \beta \gamma\).
  4. Find the value of \(q\), in terms of \(\alpha\) only.
OCR MEI FP1 2006 June Q3
6 marks Standard +0.3
3 The cubic equation \(z ^ { 3 } + 4 z ^ { 2 } - 3 z + 1 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
  1. Write down the values of \(\alpha + \beta + \gamma , \alpha \beta + \beta \gamma + \gamma \alpha\) and \(\alpha \beta \gamma\).
  2. Show that \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 22\).
OCR FP1 2014 June Q9
10 marks Standard +0.8
9 The roots of the equation \(x ^ { 3 } - k x ^ { 2 } - 2 = 0\) are \(\alpha , \beta\) and \(\gamma\), where \(\alpha\) is real and \(\beta\) and \(\gamma\) are complex.
  1. Show that \(k = \alpha - \frac { 2 } { \alpha ^ { 2 } }\).
  2. Given that \(\beta = u + \mathrm { i } v\), where \(u\) and \(v\) are real, find \(u\) in terms of \(\alpha\).
  3. Find \(v ^ { 2 }\) in terms of \(\alpha\).
OCR FP1 2016 June Q3
6 marks Standard +0.3
3 The quadratic equation \(k x ^ { 2 } + x + k = 0\) has roots \(\alpha\) and \(\beta\).
  1. Write down the values of \(\alpha + \beta\) and \(\alpha \beta\).
  2. Find the value of \(\left( \alpha + \frac { 1 } { \alpha } \right) \left( \beta + \frac { 1 } { \beta } \right)\) in terms of \(k\).
CAIE FP1 2005 November Q5
7 marks Challenging +1.8
5 In the equation $$x ^ { 3 } + a x ^ { 2 } + b x + c = 0$$ the coefficients \(a , b\) and \(c\) are real. It is given that all the roots are real and greater than 1 .
  1. Prove that \(a < - 3\).
  2. By considering the sum of the squares of the roots, prove that \(a ^ { 2 } > 2 b + 3\).
  3. By considering the sum of the cubes of the roots, prove that \(a ^ { 3 } < - 9 b - 3 c - 3\).
CAIE FP1 2007 November Q4
7 marks Standard +0.8
4 The roots of the equation $$x ^ { 3 } - 8 x ^ { 2 } + 5 = 0$$ are \(\alpha , \beta , \gamma\). Show that $$\alpha ^ { 2 } = \frac { 5 } { \beta + \gamma } .$$ It is given that the roots are all real. Without reference to a graph, show that one of the roots is negative and the other two roots are positive.
OCR MEI Paper 3 2024 June Q14
1 marks Moderate -0.5
14 Substitute appropriate values of \(t _ { 1 }\) and \(t _ { 2 }\) to verify that the expression \(t _ { 1 } ^ { 2 } + t _ { 2 } ^ { 2 } + t _ { 1 } t _ { 2 } + \frac { 1 } { 2 }\) gives the correct value for the \(y\)-coordinate of the point of intersection of the normals at the points A and B in Fig. C2.
AQA Further AS Paper 1 2023 June Q4
1 marks Easy -1.2
4 The roots of the equation $$5 x ^ { 3 } + 2 x ^ { 2 } - 3 x + p = 0$$ are \(\alpha , \beta\) and \(\gamma\) Given that \(p\) is a constant, state the value of \(\alpha \beta + \beta \gamma + \gamma \alpha\) Circle your answer.
\(- \frac { 3 } { 5 }\)
\(- \frac { 2 } { 5 }\)
\(\frac { 2 } { 5 }\)
\(\frac { 3 } { 5 }\)
OCR MEI Further Pure Core AS 2023 June Q2
4 marks Moderate -0.3
2 In this question you must show detailed reasoning.
The equation \(\mathrm { x } ^ { 2 } - \mathrm { kx } + 2 \mathrm { k } = 0\), where \(k\) is a non-zero constant, has roots \(\alpha\) and \(\beta\).
Find \(\frac { \alpha } { \beta } + \frac { \beta } { \alpha }\) in terms of \(k\), simplifying your answer.
OCR MEI Further Pure Core AS 2024 June Q5
6 marks Moderate -0.5
5
  1. Find the volume scale factor of the transformation with associated matrix \(\left( \begin{array} { r r r } 1 & 2 & 0 \\ 0 & 3 & - 1 \\ - 1 & 0 & 2 \end{array} \right)\).
  2. The transformations S and T of the plane have associated \(2 \times 2\) matrices \(\mathbf { P }\) and \(\mathbf { Q }\) respectively.
    1. Write down an expression for the associated matrix of the combined transformation S followed by T. The determinant of \(\mathbf { P }\) is 3 and \(\mathbf { Q } = \left( \begin{array} { r r } k & 3 \\ - 1 & 2 \end{array} \right)\), where \(k\) is a constant.
    2. Given that this combined transformation preserves both orientation and area, determine the value of \(k\).
Edexcel CP AS 2022 June Q4
9 marks Standard +0.8
  1. The roots of the quartic equation
$$3 x ^ { 4 } + 5 x ^ { 3 } - 7 x + 6 = 0$$ are \(\alpha , \beta , \gamma\) and \(\delta\)
Making your method clear and without solving the equation, determine the exact value of
  1. \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } + \delta ^ { 2 }\)
  2. \(\frac { 2 } { \alpha } + \frac { 2 } { \beta } + \frac { 2 } { \gamma } + \frac { 2 } { \delta }\)
  3. \(( 3 - \alpha ) ( 3 - \beta ) ( 3 - \gamma ) ( 3 - \delta )\)
Edexcel CP AS 2024 June Q1
9 marks Standard +0.3
  1. The cubic equation
$$2 x ^ { 3 } - 3 x ^ { 2 } + 5 x + 7 = 0$$ has roots \(\alpha , \beta\) and \(\gamma\).
Without solving the equation, determine the exact value of
  1. \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\)
  2. \(\frac { 3 } { \alpha } + \frac { 3 } { \beta } + \frac { 3 } { \gamma }\)
  3. \(( 5 - \alpha ) ( 5 - \beta ) ( 5 - \gamma )\)
Edexcel CP1 2021 June Q4
9 marks Standard +0.8
4 \sqrt { 3 } & - 4 \end{array} \right)$$
  1. Determine
    1. the value of \(k\),
    2. the smallest value of \(\theta\) A square \(S\) has vertices at the points with coordinates ( 0,0 ), ( \(a , - a\) ), ( \(2 a , 0\) ) and ( \(a , a\) ) where \(a\) is a constant. The square \(S\) is transformed to the square \(S ^ { \prime }\) by the transformation represented by \(\mathbf { M }\).
  2. Determine, in terms of \(a\), the area of \(S ^ { \prime }\)
    1. (a) Use the Maclaurin series expansion for \(\cos x\) to determine the series expansion of \(\cos ^ { 2 } \left( \frac { x } { 3 } \right)\) in ascending powers of \(x\), up to and including the term in \(x ^ { 4 }\)
    Give each term in simplest form.
  3. Use the answer to part (a) and calculus to find an approximation, to 5 decimal places, for $$\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 2 } } \left( \frac { 1 } { x } \cos ^ { 2 } \left( \frac { x } { 3 } \right) \right) \mathrm { d } x$$
  4. Use the integration function on your calculator to evaluate $$\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 2 } } \left( \frac { 1 } { x } \cos ^ { 2 } \left( \frac { x } { 3 } \right) \right) \mathrm { d } x$$ Give your answer to 5 decimal places.
  5. Assuming that the calculator answer in part (c) is accurate to 5 decimal places, comment on the accuracy of the approximation found in part (b).
    1. The cubic equation
    $$a x ^ { 3 } + b x ^ { 2 } - 19 x - b = 0$$ where \(a\) and \(b\) are constants, has roots \(\alpha , \beta\) and \(\gamma\)\\ The cubic equation $$w ^ { 3 } - 9 w ^ { 2 } - 97 w + c = 0$$ where \(c\) is a constant, has roots \(( 4 \alpha - 1 ) , ( 4 \beta - 1 )\) and \(( 4 \gamma - 1 )\)\\ Without solving either cubic equation, determine the value of \(a\), the value of \(b\) and the value of \(c\).
      1. \(\mathbf { A }\) is a 2 by 2 matrix and \(\mathbf { B }\) is a 2 by 3 matrix.
    Giving a reason for your answer, explain whether it is possible to evaluate
  6. \(\mathbf { A B }\)
  7. \(\mathbf { A } + \mathbf { B }\)\\ (ii) Given that $$\left( \begin{array} { r r r } - 5 & 3 & 1
    a & 0 & 0
    b & a & b \end{array} \right) \left( \begin{array} { r r r } 0 & 5 & 0
    2 & 12 & - 1
    - 1 & - 11 & 3 \end{array} \right) = \lambda \mathbf { I }$$ where \(a\), \(b\) and \(\lambda\) are constants,
  8. determine
    • the value of \(\lambda\)
    • the value of \(a\)
    • the value of \(b\)
    • Hence deduce the inverse of the matrix \(\left( \begin{array} { r r r } - 5 & 3 & 1 \\ a & 0 & 0 \\ b & a & b \end{array} \right)\)\\ (iii) Given that
    $$\mathbf { M } = \left( \begin{array} { c c c } 1 & 1 & 1
    0 & \sin \theta & \cos \theta
    0 & \cos 2 \theta & \sin 2 \theta \end{array} \right) \quad \text { where } 0 \leqslant \theta < \pi$$ determine the values of \(\theta\) for which the matrix \(\mathbf { M }\) is singular.
Edexcel CP1 2024 June Q2
8 marks Moderate -0.5
  1. The roots of the equation
$$2 x ^ { 3 } - 3 x ^ { 2 } + 12 x + 7 = 0$$ are \(\alpha , \beta\) and \(\gamma\)
Without solving the equation,
  1. write down the value of each of $$\alpha + \beta + \gamma \quad \alpha \beta + \alpha \gamma + \beta \gamma \quad \alpha \beta \gamma$$
  2. Use the answers to part (a) to determine the value of
    1. \(\frac { 2 } { \alpha } + \frac { 2 } { \beta } + \frac { 2 } { \gamma }\)
    2. \(( \alpha - 1 ) ( \beta - 1 ) ( \gamma - 1 )\)
    3. \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\)
Edexcel CP2 2019 June Q2
8 marks Standard +0.3
  1. The roots of the equation
$$x ^ { 3 } - 2 x ^ { 2 } + 4 x - 5 = 0$$ are \(p , q\) and \(r\).
Without solving the equation, find the value of
  1. \(\frac { 2 } { p } + \frac { 2 } { q } + \frac { 2 } { r }\)
  2. \(( p - 4 ) ( q - 4 ) ( r - 4 )\)
  3. \(p ^ { 3 } + q ^ { 3 } + r ^ { 3 }\)
Edexcel CP2 Specimen Q1
8 marks Moderate -0.3
  1. The roots of the equation
$$x ^ { 3 } - 8 x ^ { 2 } + 28 x - 32 = 0$$ are \(\alpha , \beta\) and \(\gamma\)
Without solving the equation, find the value of
  1. \(\frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma }\)
  2. \(( \alpha + 2 ) ( \beta + 2 ) ( \gamma + 2 )\)
  3. \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\)
OCR FP1 AS 2017 December Q5
7 marks Standard +0.8
5
2
4 \end{array} \right) + \mu \left( \begin{array} { c } 3
1
- 2 \end{array} \right) \end{aligned}$$ \(P\) is the point of intersection of \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the position vector of \(P\).
  2. Find, correct to 1 decimal place, the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\).
    \(Q\) is a point on \(l _ { 1 }\) which is 12 metres away from \(P . R\) is the point on \(l _ { 2 }\) such that \(Q R\) is perpendicular to \(l _ { 1 }\).
  3. Determine the length \(Q R\). 4 In this question you must show detailed reasoning.
    The distinct numbers \(\omega _ { 1 }\) and \(\omega _ { 2 }\) both satisfy the quadratic equation \(4 x ^ { 2 } + 4 x + 17 = 0\).
  4. Write down the value of \(\omega _ { 1 } \omega _ { 2 }\).
  5. \(A , B\) and \(C\) are the points on an Argand diagram which represent \(\omega _ { 1 } , \omega _ { 2 }\) and \(\omega _ { 1 } \omega _ { 2 }\). Find the area of triangle \(A B C\). 5 In this question you must show detailed reasoning.
    The equation \(x ^ { 3 } + 3 x ^ { 2 } - 2 x + 4 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
  6. Using the identity \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } \equiv ( \alpha + \beta + \gamma ) ^ { 3 } - 3 ( \alpha \beta + \beta \gamma + \gamma \alpha ) ( \alpha + \beta + \gamma ) + 3 \alpha \beta \gamma\) find the value of \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\).
  7. Given that \(\alpha ^ { 3 } \beta ^ { 3 } + \beta ^ { 3 } \gamma ^ { 3 } + \gamma ^ { 3 } \alpha ^ { 3 } = 112\) find a cubic equation whose roots are \(\alpha ^ { 3 } , \beta ^ { 3 }\) and \(\gamma ^ { 3 }\).
OCR FP1 AS 2018 March Q2
5 marks Moderate -0.5
2 In this question you must show detailed reasoning.
The quadratic equation \(3 x ^ { 2 } - 7 x + 5 = 0\) has roots \(\alpha\) and \(\beta\).
  1. Write down the values of \(\alpha + \beta\) and \(\alpha \beta\).
  2. Hence find the values of the following expressions.
    (a) \(\frac { 1 } { \alpha } + \frac { 1 } { \beta }\)
    (b) \(\alpha ^ { 2 } + \beta ^ { 2 }\)
    \(3 \quad l _ { 1 }\) and \(l _ { 2 }\) are two intersecting straight lines with the following equations. $$\begin{aligned} & l _ { 1 } : \mathbf { r } = \left( \begin{array} { c }
AQA Further AS Paper 1 2022 June Q2
1 marks Easy -1.8
2 The quadratic equation \(x ^ { 2 } + p x + q = 0\) has roots \(\alpha\) and \(\beta\)
Which of the following is equal to \(\alpha \beta\) ?
Circle your answer.
[0pt] [1 mark]
\(p - p - q - q\)
AQA Further Paper 1 2020 June Q3
1 marks Standard +0.3
3 The quadratic equation \(a x ^ { 2 } + b x + c = 0 ( a , b , c \in \mathbb { R } )\) has real roots \(\alpha\) and \(\beta\). One of the four statements below is incorrect. Which statement is incorrect? Tick ( \(\checkmark\) ) one box.
\(c = 0 \Rightarrow \alpha = 0\) or \(\beta = 0\) □
\(c = a \Rightarrow \alpha\) is the reciprocal of \(\beta\) □
\(b < 0\) and \(c < 0 \Rightarrow \alpha > 0\) and \(\beta > 0\) □
\(b = 0 \Rightarrow \alpha = - \beta\) □
AQA Further Paper 1 2024 June Q1
1 marks Easy -1.2
1 The roots of the equation \(20 x ^ { 3 } - 16 x ^ { 2 } - 4 x + 7 = 0\) are \(\alpha , \beta\) and \(\gamma\)
Find the value of \(\alpha \beta + \beta \gamma + \gamma \alpha\)
Circle your answer.
\(- \frac { 4 } { 5 }\)
\(- \frac { 1 } { 5 }\)
\(\frac { 1 } { 5 }\)
\(\frac { 4 } { 5 }\)