3 It is given that
$$\begin{aligned}
& \alpha + \beta + \gamma + \delta = 2
& \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } + \delta ^ { 2 } = 3
& \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } + \delta ^ { 3 } = 4
\end{aligned}$$
- Find the value of \(\alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta\).
- Find the value of \(\alpha ^ { 2 } \beta + \alpha ^ { 2 } \gamma + \alpha ^ { 2 } \delta + \beta ^ { 2 } \alpha + \beta ^ { 2 } \gamma + \beta ^ { 2 } \delta + \gamma ^ { 2 } \alpha + \gamma ^ { 2 } \beta + \gamma ^ { 2 } \delta + \delta ^ { 2 } \alpha + \delta ^ { 2 } \beta + \delta ^ { 2 } \gamma\).
\includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-06_2717_33_109_2014}
\includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-07_2723_33_99_22} - It is given that \(\alpha , \beta , \gamma , \delta\) are the roots of the equation
$$6 x ^ { 4 } - 12 x ^ { 3 } + 3 x ^ { 2 } + 2 x + 6 = 0 .$$
- Find the value of \(\alpha ^ { 4 } + \beta ^ { 4 } + \gamma ^ { 4 } + \delta ^ { 4 }\).
- Find the value of \(\alpha ^ { 5 } + \beta ^ { 5 } + \gamma ^ { 5 } + \delta ^ { 5 }\).