Standard summation formulae application

A question is this type if and only if it requires using standard results for Σr, Σr², Σr³ to find a sum like Σ(polynomial in r), often requiring simplification or factorisation.

41 questions · Moderate -0.4

Sort by: Default | Easiest first | Hardest first
OCR Further Pure Core 1 2020 November Q2
3 marks Standard +0.8
2 Find an expression for \(1 \times 2 ^ { 2 } + 2 \times 3 ^ { 2 } + 3 \times 4 ^ { 2 } + \ldots + n ( n + 1 ) ^ { 2 }\) in terms of \(n\). Give your answer in fully factorised form.
OCR Further Pure Core 2 2021 November Q4
3 marks Moderate -0.8
4 In this question you must show detailed reasoning.
Determine the value of \(\sum _ { r = 1 } ^ { 100 } ( 2 r + 3 ) ^ { 2 }\).
OCR Further Pure Core 2 Specimen Q1
4 marks Moderate -0.3
1 Find \(\sum _ { r = 1 } ^ { n } ( r + 1 ) ( r + 5 )\). Give your answer in a fully factorised form.
AQA FP1 2007 January Q6
10 marks Moderate -0.5
6
    1. Expand \(( 2 r - 1 ) ^ { 2 }\).
    2. Hence show that $$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) ^ { 2 } = \frac { 1 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)$$
  1. Hence find the sum of the squares of the odd numbers between 100 and 200 .
OCR MEI Further Pure Core AS 2022 June Q6
10 marks Moderate -0.3
6
  1. Using standard summation formulae, show that \(\sum _ { r = 1 } ^ { n } r ( r + 2 ) = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 7 )\).
  2. Use induction to prove the result in part (a).
OCR MEI Further Pure Core 2019 June Q1
4 marks Easy -1.2
1 Find \(\sum _ { r = 1 } ^ { n } \left( 2 r ^ { 2 } - 1 \right)\), expressing your answer in fully factorised form.
OCR MEI Further Pure Core 2020 November Q1
6 marks Standard +0.8
1 Using standard summation of series formulae, determine the sum of the first \(n\) terms of the series \(( 1 \times 2 \times 4 ) + ( 2 \times 3 \times 5 ) + ( 3 \times 4 \times 6 ) + \ldots\),
where \(n\) is a positive integer. Give your answer in fully factorised form.
OCR MEI Further Statistics Major 2021 November Q9
6 marks Standard +0.3
9 The discrete random variable \(X\) has a uniform distribution over the set of all integers between \(- n\) and \(n\) inclusive, where \(n\) is a positive integer.
  1. Given that \(n\) is odd, determine \(\mathrm { P } \left( \mathrm { X } > \frac { 1 } { 2 } \mathrm { n } \right)\), giving your answer as a single fraction in terms of \(n\).
  2. Determine the variance of the sum of 10 independent values of \(X\), giving your answer in the form \(\mathrm { an } ^ { 2 } + \mathrm { bn }\), where \(a\) and \(b\) are constants.
WJEC Further Unit 1 2019 June Q7
8 marks Moderate -0.3
7. (a) Find an expression for \(\sum _ { r = 1 } ^ { 2 m } ( r + 2 ) ^ { 2 }\) in the form \(\frac { 1 } { 3 } m \left( a m ^ { 2 } + b m + c \right)\), where \(a , b , c\) are integers whose values are to be determined.
(b) Hence, calculate \(\sum _ { r = 1 } ^ { 20 } ( r + 2 ) ^ { 2 }\).
Edexcel CP2 2021 June Q4
9 marks Standard +0.8
  1. In this question you may assume the results for
$$\sum _ { r = 1 } ^ { n } r ^ { 3 } , \sum _ { r = 1 } ^ { n } r ^ { 2 } \text { and } \sum _ { r = 1 } ^ { n } r$$
  1. Show that the sum of the cubes of the first \(n\) positive odd numbers is $$n ^ { 2 } \left( 2 n ^ { 2 } - 1 \right)$$ The sum of the cubes of 10 consecutive positive odd numbers is 99800
  2. Use the answer to part (a) to determine the smallest of these 10 consecutive positive odd numbers.
OCR Further Pure Core 2 2018 March Q5
5 marks Moderate -0.3
5 \end{array} \right) + \lambda \left( \begin{array} { l } 2
2
3 \end{array} \right)$$
  1. Find the acute angle between \(\Pi\) and \(l\).
  2. Find the coordinates of the point of intersection of \(\Pi\) and \(l\).
  3. \(S\) is the point \(( 4,5 , - 5 )\). Find the shortest distance from \(S\) to \(\Pi\). 2 The complex number \(2 + \mathrm { i }\) is denoted by \(z\).
  4. Show that \(z ^ { 2 } = 3 + 4 \mathrm { i }\).
  5. Plot the following on the Argand diagram in the Printed Answer Booklet.
    • \(z\)
    • \(z ^ { 2 }\)
    • State the relationship between \(\left| z ^ { 2 } \right|\) and \(| z |\).
    • State the relationship between \(\arg \left( z ^ { 2 } \right)\) and \(\arg ( z )\).
    3 In this question you must show detailed reasoning. Use the formula \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\) to evaluate \(121 ^ { 2 } + 122 ^ { 2 } + 123 ^ { 2 } + \ldots + 300 ^ { 2 }\). 4 You are given that the cubic equation \(2 x ^ { 3 } - 3 x ^ { 2 } + x + 4 = 0\) has three roots, \(\alpha , \beta\) and \(\gamma\).
    By making a suitable substitution to obtain a related cubic equation, determine the value of \(\frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma }\). 5 In this question you must show detailed reasoning.
    An ant starts from a fixed point \(O\) and walks in a straight line for 1.5 s . Its velocity, \(v \mathrm {~cm} \mathrm {~s} ^ { - 1 }\), can be modelled by \(v = \frac { 1 } { \sqrt { 9 - t ^ { 2 } } }\). By finding the mean value of \(v\) in \(0 \leqslant t \leqslant 1.5\), deduce the average velocity of the ant.
AQA FP1 2008 January Q4
7 marks Standard +0.3
4
  1. Find $$\sum _ { r = 1 } ^ { n } \left( r ^ { 3 } - 6 r \right)$$ expressing your answer in the form $$k n ( n + 1 ) ( n + p ) ( n + q )$$ where \(k\) is a fraction and \(p\) and \(q\) are integers.
  2. It is given that $$S = \sum _ { r = 1 } ^ { 1000 } \left( r ^ { 3 } - 6 r \right)$$ Without calculating the value of \(S\), show that \(S\) is a multiple of 2008 .
AQA FP1 2010 January Q8
9 marks Moderate -0.3
8
  1. Show that $$\sum _ { r = 1 } ^ { n } r ^ { 3 } + \sum _ { r = 1 } ^ { n } r$$ can be expressed in the form $$k n ( n + 1 ) \left( a n ^ { 2 } + b n + c \right)$$ where \(k\) is a rational number and \(a , b\) and \(c\) are integers.
  2. Show that there is exactly one positive integer \(n\) for which $$\sum _ { r = 1 } ^ { n } r ^ { 3 } + \sum _ { r = 1 } ^ { n } r = 8 \sum _ { r = 1 } ^ { n } r ^ { 2 }$$
AQA FP1 2006 June Q3
4 marks Moderate -0.8
3 Show that $$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } - r \right) = k n ( n + 1 ) ( n - 1 )$$ where \(k\) is a rational number.
AQA Further Paper 2 2024 June Q5
3 marks Moderate -0.5
5 The first four terms of the series \(S\) can be written as $$S = ( 1 \times 2 ) + ( 2 \times 3 ) + ( 3 \times 4 ) + ( 4 \times 5 ) + \ldots$$ 5
  1. Write an expression, using \(\sum\) notation, for the sum of the first \(n\) terms of \(S\) 5
  2. Show that the sum of the first \(n\) terms of \(S\) is equal to $$\frac { 1 } { 3 } n ( n + 1 ) ( n + 2 )$$
OCR Further Pure Core 1 2021 June Q1
3 marks Standard +0.8
1 Find an expression for \(1 \times 2 ^ { 2 } + 2 \times 3 ^ { 2 } + 3 \times 4 ^ { 2 } + \ldots + n ( n + 1 ) ^ { 2 }\) in terms of \(n\). Give your answer in fully factorised form.