AQA FP1 2010 January — Question 8

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJanuary
TopicSequences and series, recurrence and convergence

8
  1. Show that $$\sum _ { r = 1 } ^ { n } r ^ { 3 } + \sum _ { r = 1 } ^ { n } r$$ can be expressed in the form $$k n ( n + 1 ) \left( a n ^ { 2 } + b n + c \right)$$ where \(k\) is a rational number and \(a , b\) and \(c\) are integers.
  2. Show that there is exactly one positive integer \(n\) for which $$\sum _ { r = 1 } ^ { n } r ^ { 3 } + \sum _ { r = 1 } ^ { n } r = 8 \sum _ { r = 1 } ^ { n } r ^ { 2 }$$