Standard summation formulae application

A question is this type if and only if it requires using standard results for Σr, Σr², Σr³ to find a sum like Σ(polynomial in r), often requiring simplification or factorisation.

41 questions · Moderate -0.4

Sort by: Default | Easiest first | Hardest first
Edexcel F1 2014 June Q1
4 marks Moderate -0.8
  1. Find the value of
$$\sum _ { r = 1 } ^ { 200 } ( r + 1 ) ( r - 1 )$$
OCR FP1 2006 January Q5
6 marks Moderate -0.5
5 Use the standard results for \(\sum _ { r = 1 } ^ { n } r , \sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } \left( 8 r ^ { 3 } - 6 r ^ { 2 } + 2 r \right) = 2 n ^ { 3 } ( n + 1 )$$
OCR FP1 2007 January Q3
6 marks Moderate -0.3
3 Use the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to find $$\sum _ { r = 1 } ^ { n } r ( r - 1 ) ( r + 1 ) ,$$ expressing your answer in a fully factorised form.
OCR FP1 2006 June Q4
5 marks Moderate -0.5
4 Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } \left( r ^ { 3 } + r ^ { 2 } \right) = \frac { 1 } { 12 } n ( n + 1 ) ( n + 2 ) ( 3 n + 1 )$$
OCR FP1 2008 June Q5
6 marks Moderate -0.3
5 Find \(\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r - 1 )\), expressing your answer in a fully factorised form.
OCR FP1 2013 June Q5
6 marks Moderate -0.8
5 Find \(\sum _ { r = 1 } ^ { n } \left( 4 r ^ { 3 } - 3 r ^ { 2 } + r \right)\), giving your answer in a fully factorised form.
OCR FP1 Specimen Q1
5 marks Moderate -0.5
1 Use formulae for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) to show that $$\sum _ { r = 1 } ^ { n } r ( r + 1 ) = \frac { 1 } { 3 } n ( n + 1 ) ( n + 2 )$$
OCR MEI FP1 2005 January Q4
6 marks Moderate -0.3
4 Find \(\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r + 2 )\), giving your answer in a factorised form.
OCR MEI FP1 2006 January Q3
6 marks Moderate -0.8
3 Find \(\sum _ { r = 1 } ^ { n } ( r + 1 ) ( r - 1 )\), expressing your answer in a fully factorised form.
OCR MEI FP1 2007 January Q4
6 marks Moderate -0.5
4 Use standard series formulae to find \(\sum _ { r = 1 } ^ { n } r \left( r ^ { 2 } + 1 \right)\), factorising your answer as far as possible.
OCR MEI FP1 2008 January Q4
6 marks Moderate -0.8
4 Using the standard formulae for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\), show that \(\sum _ { r = 1 } ^ { n } [ ( r + 1 ) ( r - 2 ) ] = \frac { 1 } { 3 } n \left( n ^ { 2 } - 7 \right)\).
OCR FP1 2009 January Q3
6 marks Moderate -0.8
3 Find \(\sum _ { r = 1 } ^ { n } \left( 4 r ^ { 3 } + 6 r ^ { 2 } + 2 r \right)\), expressing your answer in a fully factorised form.
OCR FP1 2010 January Q4
6 marks Standard +0.3
4 Find \(\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( r - 2 )\), expressing your answer in a fully factorised form.
OCR FP1 2012 January Q4
6 marks Moderate -0.8
4 Find \(\sum _ { r = 1 } ^ { n } r \left( r ^ { 2 } - 3 \right)\), expressing your answer in a fully factorised form.
OCR FP1 2011 June Q4
6 marks Moderate -0.8
4 Find \(\sum _ { r = 1 } ^ { 2 n } \left( 3 r ^ { 2 } - \frac { 1 } { 2 } \right)\), expressing your answer in a fully factorised form.
OCR FP1 2012 June Q4
7 marks Moderate -0.8
4 Find \(\sum _ { r = 1 } ^ { n } \left( 3 r ^ { 2 } - 3 r + 2 \right)\), expressing your answer in a fully factorised form.
OCR FP1 2015 June Q2
4 marks Moderate -0.8
2 Find \(\sum _ { r = 1 } ^ { n } \left( 3 r ^ { 2 } - 5 \right)\), expressing your answer in a fully factorised form.
OCR FP1 2016 June Q1
5 marks Moderate -0.5
1 Find \(\sum _ { r = 1 } ^ { n } ( 3 r + 1 ) ( r - 1 )\), giving your answer in a fully factorised form.
OCR MEI FP1 2010 January Q5
6 marks Moderate -0.8
5 Use standard series formulae to show that \(\sum _ { r = 1 } ^ { n } ( r + 2 ) ( r - 3 ) = \frac { 1 } { 3 } n \left( n ^ { 2 } - 19 \right)\).
OCR MEI FP1 2012 January Q4
6 marks Moderate -0.3
4 Using the standard summation formulae, find \(\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r - 1 )\). Give your answer in a fully factorised form.
OCR MEI FP1 2014 June Q1
5 marks Moderate -0.8
1 Use standard series formulae to find \(\sum _ { r = 1 } ^ { n } r ( r - 2 )\), factorising your answer as far as possible.
OCR MEI Paper 3 2023 June Q11
3 marks Easy -1.2
11
  1. Evaluate \(\sum _ { r = 1 } ^ { 5 } r ^ { 2 }\).
  2. Show that Euler's approximate formula, as given in line 13, gives the exact value of \(\sum _ { r = 1 } ^ { 5 } r ^ { 2 }\).
OCR MEI Paper 3 2023 June Q13
4 marks Challenging +1.2
13 Prove that Euler's approximate formula, as given in line 13, when applied to \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \mathrm { r } ^ { 2 }\) gives exactly \(\frac { n ( n + 1 ) ( 2 n + 1 ) } { 6 }\).
OCR Further Pure Core 1 2019 June Q4
3 marks Easy -1.2
4 Using the formulae for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\), show that \(\sum _ { r = 1 } ^ { 10 } r ( 3 r - 2 ) = 1045\).
OCR Further Pure Core 1 2023 June Q1
3 marks Standard +0.3
1 In this question you must show detailed reasoning.
Determine the value of \(\sum _ { r = 1 } ^ { 50 } r ^ { 2 } ( 16 - r )\).