Edexcel CP2 Specimen — Question 3

Exam BoardEdexcel
ModuleCP2 (Core Pure 2)
SessionSpecimen
Topic3x3 Matrices

$$\mathbf { M } = \left( \begin{array} { c c c } 2 & a & 4
1 & - 1 & - 1
- 1 & 2 & - 1 \end{array} \right)$$ where \(a\) is a constant.
  1. For which values of \(a\) does the matrix \(\mathbf { M }\) have an inverse? Given that \(\mathbf { M }\) is non-singular,
  2. find \(\mathbf { M } ^ { - 1 }\) in terms of \(a\)
    (ii) Prove by induction that for all positive integers \(n\), $$\left( \begin{array} { l l } 3 & 0
    6 & 1 \end{array} \right) ^ { n } = \left( \begin{array} { c c } 3 ^ { n } & 0
    3 \left( 3 ^ { n } - 1 \right) & 1 \end{array} \right)$$