CAIE
FP1
2011
June
Q4
8 marks
Standard +0.8
4 The curve \(C\) has equation
$$2 x y ^ { 2 } + 3 x ^ { 2 } y = 1$$
Show that, at the point \(A ( - 1,1 )\) on \(C , \frac { \mathrm {~d} y } { \mathrm {~d} x } = - 4\).
Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE
FP1
2015
June
Q6
9 marks
Standard +0.3
6 A curve has equation \(x ^ { 2 } - 6 x y + 25 y ^ { 2 } = 16\). Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) at the point \(( 3,1 )\).
By finding the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( 3,1 )\), determine the nature of this turning point.
CAIE
FP1
2006
November
Q10
10 marks
Challenging +1.8
10 The curve \(C\) has equation
$$y = x ^ { 2 } + \lambda \sin ( x + y ) ,$$
where \(\lambda\) is a constant, and passes through the point \(A \left( \frac { 1 } { 4 } \pi , \frac { 1 } { 4 } \pi \right)\). Show that \(C\) has no tangent which is parallel to the \(y\)-axis.
Show that, at \(A\),
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 2 - \frac { 1 } { 64 } \pi ( 4 - \pi ) ( \pi + 2 ) ^ { 2 }$$
CAIE
FP1
2008
November
Q5
7 marks
Standard +0.3
5 The curve \(C\) has equation
$$x ^ { 2 } - x y - 2 y ^ { 2 } = 4 .$$
Show that, at the point \(A ( 2,0 )\) on \(C , \frac { \mathrm {~d} y } { \mathrm {~d} x } = 2\).
Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE
FP1
2016
November
Q8
11 marks
Challenging +1.2
8 A curve \(C\) has equation \(x ^ { 2 } + 4 x y - y ^ { 2 } + 20 = 0\). Show that, at stationary points on \(C , x = - 2 y\).
Find the coordinates of the stationary points on \(C\), and determine their nature by considering the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the stationary points.