Find second derivative d²y/dx²

A question is this type if and only if it asks to find the value of the second derivative at a specific point on an implicitly defined curve.

26 questions · Standard +0.8

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2023 June Q4
8 marks Standard +0.8
4 The curve \(C\) has equation $$4 y ^ { 3 } + ( x + y ) ^ { 6 } = 109 .$$
  1. Show that, at the point \(( - 4,3 )\) on \(C , \frac { \mathrm { dy } } { \mathrm { dx } } = \frac { 1 } { 17 }\).
  2. Find the value of \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\) at the point \(( - 4,3 )\).
CAIE Further Paper 2 2024 June Q3
8 marks Standard +0.8
3 The curve \(C\) has equation $$x ^ { 3 } + 2 x y + 8 y ^ { 3 } = - 12$$
  1. Show that, at the point \(( - 2 , - 1 )\) on \(C , \frac { \mathrm {~d} y } { \mathrm {~d} x } = - \frac { 1 } { 2 }\). \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-06_2714_37_143_2008}
  2. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( - 2 , - 1 )\).
CAIE Further Paper 2 2020 November Q5
8 marks Standard +0.8
5 The curve \(C\) has equation $$y ^ { 2 } + ( x y + 1 ) ^ { 2 } = 5$$
  1. Show that, at the point \(( 1,1 )\) on \(C , \frac { \mathrm { dy } } { \mathrm { dx } } = - \frac { 2 } { 3 }\).
  2. Find the value of \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\) at the point \(( 1,1 )\).
CAIE Further Paper 2 2021 November Q3
8 marks Standard +0.8
3 The curve \(C\) has equation $$x y ^ { 3 } - 4 x ^ { 3 } y = 3$$
  1. Show that, at the point \(( - 1,1 )\) on \(C , \frac { \mathrm { dy } } { \mathrm { dx } } = 11\).
  2. Find the value of \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\) at the point \(( - 1,1 )\). \includegraphics[max width=\textwidth, alt={}, center]{37db1c60-0f94-413f-b29b-5872975eee9e-06_535_1584_276_276} The diagram shows the curve with equation \(\mathrm { y } = \frac { \ln \mathrm { x } } { \mathrm { x } ^ { 2 } }\) for \(x \geqslant 2\), together with a set of \(( N - 2 )\) rectangles
    of unit width.
CAIE Further Paper 2 2021 November Q3
8 marks Standard +0.8
3 The curve \(C\) has equation $$x y ^ { 3 } - 4 x ^ { 3 } y = 3$$
  1. Show that, at the point \(( - 1,1 )\) on \(C , \frac { \mathrm { dy } } { \mathrm { dx } } = 11\).
  2. Find the value of \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\) at the point \(( - 1,1 )\). \includegraphics[max width=\textwidth, alt={}, center]{59982339-c496-4bd7-8dcd-9b257f3afc02-06_535_1584_276_276} The diagram shows the curve with equation \(\mathrm { y } = \frac { \ln \mathrm { x } } { \mathrm { x } ^ { 2 } }\) for \(x \geqslant 2\), together with a set of \(( N - 2 )\) rectangles
    of unit width.
CAIE Further Paper 2 2022 November Q2
7 marks Standard +0.3
2 A curve has equation $$( x + 1 ) y + y ^ { 2 } = 2$$
  1. Show that \(\frac { \mathrm { dy } } { \mathrm { dx } } = - \frac { 2 } { 3 }\) at the point \(( 0 , - 2 )\).
  2. Find the value of \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\) at the point \(( 0 , - 2 )\).
CAIE Further Paper 2 2024 November Q2
7 marks Standard +0.8
2 The curve \(C\) has equation $$4 y ^ { 2 } + 4 \ln ( x y ) = 1 .$$
  1. Show that, at the point \(\left( 2 , \frac { 1 } { 2 } \right)\) on \(C , \frac { \mathrm {~d} y } { \mathrm {~d} x } = - \frac { 1 } { 6 }\). \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-04_2718_35_107_2012} \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-05_2725_35_99_20}
  2. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(\left( 2 , \frac { 1 } { 2 } \right)\).
CAIE FP1 2009 June Q6
7 marks Standard +0.8
6 A curve has equation $$( x + y ) \left( x ^ { 2 } + y ^ { 2 } \right) = 1$$ Find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( 0,1 )\).
CAIE FP1 2010 June Q1
5 marks Standard +0.8
1 The variables \(x\) and \(y\) are such that \(y = - 1\) when \(x = 1\) and $$x ^ { 2 } + y ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 3 } = 29$$ Find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 1\).
CAIE FP1 2011 June Q4
8 marks Standard +0.8
4 The curve \(C\) has equation $$2 x y ^ { 2 } + 3 x ^ { 2 } y = 1$$ Show that, at the point \(A ( - 1,1 )\) on \(C , \frac { \mathrm {~d} y } { \mathrm {~d} x } = - 4\). Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE FP1 2012 June Q3
8 marks Standard +0.3
3 The curve \(C\) has equation $$x y + ( x + y ) ^ { 3 } = 1$$ Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 3 } { 4 }\) at the point \(A ( 1,0 )\) on \(C\). Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE FP1 2013 June Q4
8 marks Standard +0.3
4 Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 4 } { 3 }\) at the point \(A ( 1 , - 2 )\) on the curve with equation $$y ^ { 3 } - 3 x ^ { 2 } y + 2 = 0$$ and find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE FP1 2015 June Q6
9 marks Standard +0.3
6 A curve has equation \(x ^ { 2 } - 6 x y + 25 y ^ { 2 } = 16\). Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) at the point \(( 3,1 )\). By finding the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( 3,1 )\), determine the nature of this turning point.
CAIE FP1 2017 June Q3
5 marks Standard +0.3
3 A curve \(C\) has equation \(\tan y = x\), for \(x > 0\).
  1. Use implicit differentiation to show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - 2 x \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 }$$
  2. Hence find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(\left( 1 , \frac { 1 } { 4 } \pi \right)\) on \(C\).
CAIE FP1 2017 June Q4
7 marks Standard +0.8
4 A curve \(C\) has equation \(x ^ { 3 } - 3 x y + y ^ { 2 } = 4\). Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( 0,2 )\) of \(C\).
CAIE FP1 2019 June Q1
6 marks Standard +0.3
1 A curve \(C\) has equation \(\cos y = x\), for \(- \pi < x < \pi\).
  1. Use implicit differentiation to show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \cot y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 }$$
  2. Hence find the exact value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(\left( \frac { 1 } { 2 } , \frac { 1 } { 3 } \pi \right)\) on \(C\).
CAIE FP1 2002 November Q6
9 marks Standard +0.8
6 A curve has equation \(x ^ { 3 } + x y ^ { 2 } - y ^ { 3 } = 3\).
  1. Show that there is no point of the curve at which \(\frac { d y } { d x } = 0\).
  2. Find the values of \(\frac { d y } { d x }\) and \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\) at the point \(( 1 , - 1 )\).
CAIE FP1 2004 November Q7
8 marks Standard +0.8
7 The curve \(C\) has equation $$x y + ( x + y ) ^ { 5 } = 1$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 5 } { 6 }\) at the point \(A ( 1,0 )\) on \(C\).
  2. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE FP1 2006 November Q10
10 marks Challenging +1.8
10 The curve \(C\) has equation $$y = x ^ { 2 } + \lambda \sin ( x + y ) ,$$ where \(\lambda\) is a constant, and passes through the point \(A \left( \frac { 1 } { 4 } \pi , \frac { 1 } { 4 } \pi \right)\). Show that \(C\) has no tangent which is parallel to the \(y\)-axis. Show that, at \(A\), $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 2 - \frac { 1 } { 64 } \pi ( 4 - \pi ) ( \pi + 2 ) ^ { 2 }$$
CAIE FP1 2008 November Q5
7 marks Standard +0.3
5 The curve \(C\) has equation $$x ^ { 2 } - x y - 2 y ^ { 2 } = 4 .$$ Show that, at the point \(A ( 2,0 )\) on \(C , \frac { \mathrm {~d} y } { \mathrm {~d} x } = 2\). Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE FP1 2016 November Q8
11 marks Challenging +1.2
8 A curve \(C\) has equation \(x ^ { 2 } + 4 x y - y ^ { 2 } + 20 = 0\). Show that, at stationary points on \(C , x = - 2 y\). Find the coordinates of the stationary points on \(C\), and determine their nature by considering the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the stationary points.
CAIE FP1 2017 November Q5
8 marks Standard +0.8
5 The curve \(C\) has equation \(2 x ^ { 3 } + 3 x ^ { 2 } y - 3 y ^ { 3 } - 16 = 0\).
  1. Find the coordinates of the point \(A\) on \(C\) at which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) and \(x \neq 0\).
  2. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE FP1 2018 November Q11 OR
Challenging +1.8
The curve \(C\) has equation $$x ^ { 2 } + 2 x y = y ^ { 3 } - 2$$
  1. Show that \(A ( - 1,1 )\) is the only point on \(C\) with \(x\)-coordinate equal to - 1 .
    For \(n \geqslant 1\), let \(A _ { n }\) denote the value of \(\frac { \mathrm { d } ^ { n } y } { \mathrm {~d} x ^ { n } }\) at the point \(A ( - 1,1 )\).
  2. Show that \(A _ { 1 } = 0\).
  3. Show that \(A _ { 2 } = \frac { 2 } { 5 }\).
    Let \(I _ { n } = \int _ { - 1 } ^ { 0 } x ^ { n } \frac { \mathrm {~d} ^ { n } y } { \mathrm {~d} x ^ { n } } \mathrm {~d} x\).
  4. Show that for \(n \geqslant 2\), $$I _ { n } = ( - 1 ) ^ { n + 1 } A _ { n - 1 } - n I _ { n - 1 } .$$
  5. Deduce the value of \(I _ { 3 }\) in terms of \(I _ { 1 }\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2007 November Q5
7 marks Standard +0.8
5 The positive variables \(x\) and \(y\) are related by $$y = x ^ { 2 } + 2 \ln ( x y )$$ Find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when both \(x\) and \(y\) are equal to 1 .
CAIE FP1 2011 November Q5
7 marks Standard +0.8
5 The point \(P ( 2,1 )\) lies on the curve with equation $$x ^ { 3 } - 2 y ^ { 3 } = 3 x y$$ Find
  1. the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at \(P\),
  2. the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(P\).