Find P and D for A² = PDP⁻¹ or A⁻¹ = PDP⁻¹

Questions asking to find matrices P and diagonal matrix D such that A² = PDP⁻¹ or A⁻¹ = PDP⁻¹ (diagonalization of a power or inverse of A)

11 questions · Challenging +1.3

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2021 June Q6
11 marks Challenging +1.2
6 The matrix \(\mathbf { A }\) is given by $$A = \left( \begin{array} { r r r } 5 & - \frac { 22 } { 3 } & 8 \\ 0 & - 6 & 0 \\ 0 & 0 & 1 \end{array} \right)$$
  1. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 2 } = \mathbf { P D P } ^ { - 1 }\).
  2. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { 3 }\).
CAIE Further Paper 2 2022 June Q8
13 marks Challenging +1.2
8
  1. Find the value of \(a\) for which the system of equations $$\begin{gathered} 3 x + a y = 0 \\ 5 x - y = 0 \\ x + 3 y + 2 z = 0 \end{gathered}$$ does not have a unique solution.
    The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 3 & 0 & 0 \\ 5 & - 1 & 0 \\ 1 & 3 & 2 \end{array} \right)$$
  2. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 2 } = \mathbf { P D P } ^ { - 1 }\).
  3. Use the characteristic equation of \(\mathbf { A }\) to show that $$( \mathbf { A } + 6 \mathbf { I } ) ^ { 2 } = \mathbf { A } ^ { 4 } ( \mathbf { A } + b \mathbf { I } ) ^ { 2 }$$ where \(b\) is an integer to be determined.
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2023 June Q5
10 marks Standard +0.8
5 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 18 & 5 & - 11 \\ 8 & 6 & - 4 \\ 32 & 10 & - 20 \end{array} \right)$$
  1. Show that the characteristic equation of \(\mathbf { A }\) is \(\lambda ^ { 3 } - 4 \lambda ^ { 2 } - 20 \lambda + 48 = 0\) and hence find the eigenvalues of \(\mathbf { A }\).
  2. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 5 } = \mathbf { P D P } ^ { - 1 }\).
CAIE Further Paper 2 2023 June Q8
14 marks Challenging +1.2
8 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { c c c } a & - 6 a & 2 a + 2 \\ 0 & 1 - a & 0 \\ 0 & 2 - a & - 1 \end{array} \right)$$ where \(a\) is a constant with \(a \neq 0\) and \(a \neq 1\).
  1. Show that the equation \(\mathbf { A } \left( \begin{array} { c } x \\ y \\ z \end{array} \right) = \left( \begin{array} { c } 1 \\ 2 \\ 3 \end{array} \right)\) has a unique solution and interpret this situation geometrically.
  2. Show that the eigenvalues of \(\mathbf { A }\) are \(a , 1 - a\) and - 1 .
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 4 } = \mathbf { P D P } ^ { - 1 }\).
  4. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { 4 }\) in terms of \(\mathbf { A }\) and \(a\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2024 June Q8
16 marks Challenging +1.8
8
  1. Find the set of values of \(a\) for which the system of equations $$\begin{array} { c l } 6 x + a y & = 3 \\ 2 x - y & = 1 \\ x + 5 y + 4 z & = 2 \end{array}$$ has a unique solution.
  2. Show that the system of equations in part (a) is consistent for all values of \(a\).
    The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 6 & 0 & 0 \\ 2 & - 1 & 0 \\ 1 & 5 & 4 \end{array} \right)$$
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( 14 \mathbf { A } + 24 \mathbf { I } ) ^ { 2 } = \mathbf { P D P } ^ { - 1 }\).
  4. Use the characteristic equation of \(\mathbf { A }\) to show that $$( 14 \mathbf { A } + 24 \mathbf { I } ) ^ { 2 } = \mathbf { A } ^ { 4 } ( \mathbf { A } + b \mathbf { I } ) ^ { 2 }$$ where \(b\) is an integer to be determined.
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2022 November Q6
11 marks
6 The matrix \(\mathbf { A }\) is given by $$A = \left( \begin{array} { r r r } 2 & - 3 & - 7 \\ 0 & 5 & 7 \\ 0 & 0 & - 2 \end{array} \right) .$$
  1. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 5 } = \mathbf { P D P } ^ { - 1 }\).
  2. Use the characteristic equation of \(\mathbf { A }\) to show that $$\mathbf { A } ^ { 4 } = a \mathbf { A } ^ { 2 } + b \mathbf { I } ,$$ where \(a\) and \(b\) are integers to be determined.
CAIE Further Paper 2 2023 November Q7
11 marks
7 The matrix \(\mathbf { A }\) is given by $$A = \left( \begin{array} { r r r } - 6 & 2 & 13 \\ 0 & - 2 & 5 \\ 0 & 0 & 8 \end{array} \right) .$$
  1. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { - 1 } = \mathbf { P D P } ^ { - 1 }\).
  2. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { - 1 }\).
CAIE Further Paper 2 2024 November Q8
14 marks Challenging +1.8
8 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } - 2 & 0 & 0 \\ 0 & 7 & 9 \\ 4 & 1 & 7 \end{array} \right)$$
  1. Show that the characteristic equation of \(\mathbf { A }\) is \(\lambda ^ { 3 } - 12 \lambda ^ { 2 } + 12 \lambda + 80 = 0\) and find the eigenvalues of A. \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-16_2718_38_106_2010} \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-17_2723_33_99_22}
  2. Use the characteristic equation of \(\mathbf { A }\) to show that $$\mathbf { A } ^ { 4 } = p \mathbf { A } ^ { 2 } + q \mathbf { A } + r \mathbf { I } ,$$ where \(p , q\) and \(r\) are integers to be determined.
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } - 3 \mathbf { I } ) ^ { 4 } = \mathbf { P D P } ^ { - 1 }\) .
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
OCR MEI FP2 2007 June Q3
18 marks Challenging +1.2
3 Let \(\mathbf { M } = \left( \begin{array} { r r r } 3 & 5 & 2 \\ 5 & 3 & - 2 \\ 2 & - 2 & - 4 \end{array} \right)\).
  1. Show that the characteristic equation for \(\mathbf { M }\) is \(\lambda ^ { 3 } - 2 \lambda ^ { 2 } - 48 \lambda = 0\). You are given that \(\left( \begin{array} { r } 1 \\ - 1 \\ 1 \end{array} \right)\) is an eigenvector of \(\mathbf { M }\) corresponding to the eigenvalue 0 .
  2. Find the other two eigenvalues of \(\mathbf { M }\), and corresponding eigenvectors.
  3. Write down a matrix \(\mathbf { P }\), and a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { P } ^ { - 1 } \mathbf { M } ^ { 2 } \mathbf { P } = \mathbf { D }\).
  4. Use the Cayley-Hamilton theorem to find integers \(a\) and \(b\) such that \(\mathbf { M } ^ { 4 } = a \mathbf { M } ^ { 2 } + b \mathbf { M }\). Section B (18 marks)
OCR MEI FP2 2006 January Q3
18 marks Challenging +1.2
3 The matrix \(\mathbf { M } = \left( \begin{array} { r r r } 1 & 2 & 3 \\ - 2 & - 3 & 6 \\ 2 & 2 & - 4 \end{array} \right)\).
  1. Show that the characteristic equation for \(\mathbf { M }\) is \(\lambda ^ { 3 } + 6 \lambda ^ { 2 } - 9 \lambda - 14 = 0\).
  2. Show that - 1 is an eigenvalue of \(\mathbf { M }\), and find the other two eigenvalues.
  3. Find an eigenvector corresponding to the eigenvalue - 1 .
  4. Verify that \(\left( \begin{array} { l } 3 \\ 0 \\ 1 \end{array} \right)\) and \(\left( \begin{array} { r } 0 \\ 3 \\ - 2 \end{array} \right)\) are eigenvectors of \(\mathbf { M }\).
  5. Write down a matrix \(\mathbf { P }\), and a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { M } ^ { 3 } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).
  6. Use the Cayley-Hamilton theorem to express \(\mathbf { M } ^ { - 1 }\) in the form \(a \mathbf { M } ^ { 2 } + b \mathbf { M } + c \mathbf { I }\). Section B (18 marks)
CAIE FP1 2007 November Q11
11 marks Challenging +1.2
11 Find the eigenvalues of the matrix $$\mathbf { A } = \left( \begin{array} { r r r } - 1 & 1 & 4 \\ 1 & 1 & - 1 \\ 2 & 1 & 1 \end{array} \right)$$ and corresponding eigenvectors. The matrix \(\mathbf { B }\) is defined by $$\mathbf { B } = \mathbf { A } - k \mathbf { I } ,$$ where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix and \(k\) is a real number. Find a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { B } ^ { 3 } = \mathbf { P D } \mathbf { P } ^ { - 1 } .$$