CAIE Further Paper 2 2023 June — Question 5

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2023
SessionJune
TopicInvariant lines and eigenvalues and vectors

5 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 18 & 5 & - 11
8 & 6 & - 4
32 & 10 & - 20 \end{array} \right)$$
  1. Show that the characteristic equation of \(\mathbf { A }\) is \(\lambda ^ { 3 } - 4 \lambda ^ { 2 } - 20 \lambda + 48 = 0\) and hence find the eigenvalues of \(\mathbf { A }\).
  2. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 5 } = \mathbf { P D P } ^ { - 1 }\).