OCR Further Pure Core AS Specimen — Question 3

Exam BoardOCR
ModuleFurther Pure Core AS (Further Pure Core AS)
SessionSpecimen
TopicMatrices

3
  1. You are given two matrices, A and B, where $$\mathbf { A } = \left( \begin{array} { l l } 1 & 2
    2 & 1 \end{array} \right) \text { and } \mathbf { B } = \left( \begin{array} { c c } - 1 & 2
    2 & - 1 \end{array} \right)$$ Show that \(\mathbf { A B } = m \mathbf { I }\), where \(m\) is a constant to be determined.
  2. You are given two matrices, \(\mathbf { C }\) and \(\mathbf { D }\), where $$\mathbf { C } = \left( \begin{array} { r r r } 2 & 1 & 5
    1 & 1 & 3
    - 1 & 2 & 2 \end{array} \right) \text { and } \mathbf { D } = \left( \begin{array} { r r r } - 4 & 8 & - 2
    - 5 & 9 & - 1
    3 & - 5 & 1 \end{array} \right)$$ Show that \(\mathbf { C } ^ { - 1 } = k \mathbf { D }\) where \(k\) is a constant to be determined.
  3. The matrices \(\mathbf { E }\) and \(\mathbf { F }\) are given by \(\mathbf { E } = \left( \begin{array} { c c } k & k ^ { 2 }
    3 & 0 \end{array} \right)\) and \(\mathbf { F } = \binom { 2 } { k }\) where \(k\) is a constant. Determine any matrix \(\mathbf { F }\) for which \(\mathbf { E F } = \binom { - 2 k } { 6 }\).