OCR MEI FP1 2007 January — Question 9

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
Year2007
SessionJanuary
TopicMatrices

9 Matrices \(\mathbf { M }\) and \(\mathbf { N }\) are given by \(\mathbf { M } = \left( \begin{array} { l l } 3 & 2
0 & 1 \end{array} \right)\) and \(\mathbf { N } = \left( \begin{array} { r r } 1 & - 3
1 & 4 \end{array} \right)\).
  1. Find \(\mathbf { M } ^ { - 1 }\) and \(\mathbf { N } ^ { - 1 }\).
  2. Find \(\mathbf { M N }\) and \(( \mathbf { M N } ) ^ { - \mathbf { 1 } }\). Verify that \(( \mathbf { M N } ) ^ { - 1 } = \mathbf { N } ^ { - 1 } \mathbf { M } ^ { - 1 }\).
  3. The result \(( \mathbf { P Q } ) ^ { - 1 } = \mathbf { Q } ^ { - 1 } \mathbf { P } ^ { - 1 }\) is true for any two \(2 \times 2\), non-singular matrices \(\mathbf { P }\) and \(\mathbf { Q }\). The first two lines of a proof of this general result are given below. Beginning with these two lines, complete the general proof. $$\begin{aligned} & ( \mathbf { P Q } ) ^ { - 1 } \mathbf { P Q } = \mathbf { I }
    \Rightarrow & ( \mathbf { P Q } ) ^ { - 1 } \mathbf { P Q Q } \mathbf { Q } ^ { - 1 } = \mathbf { I Q } ^ { - 1 } \end{aligned}$$