Graph with equation y = a|bx+c| + d

Analyze or sketch graph of form y = a|bx+c| + d, finding vertex, intercepts, or solving related equations/inequalities.

24 questions · Moderate -0.3

Sort by: Default | Easiest first | Hardest first
Edexcel P3 2020 January Q6
9 marks Standard +0.3
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1c700103-ecab-4a08-b411-3f445ed88885-18_736_1102_258_427} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows part of the graph with equation \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = 2 | 2 x - 5 | + 3 \quad x \geqslant 0$$ The vertex of the graph is at point \(P\) as shown.
  1. State the coordinates of \(P\).
  2. Solve the equation \(\mathrm { f } ( x ) = 3 x - 2\) Given that the equation $$f ( x ) = k x + 2$$ where \(k\) is a constant, has exactly two roots,
  3. find the range of values of \(k\).
Edexcel P3 2022 January Q7
10 marks Standard +0.3
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f3272b4c-d8dc-4f32-add9-153de90f4d0a-18_720_746_210_591} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the graph with equation \(y = \mathrm { f } ( x )\), where $$f ( x ) = \frac { 1 } { 2 } | 2 x + 7 | - 10$$
  1. State the coordinates of the vertex, V, of the graph.
  2. Solve, using algebra, $$\frac { 1 } { 2 } | 2 x + 7 | - 10 \geqslant \frac { 1 } { 3 } x + 1$$
  3. Sketch the graph with equation $$y = | \mathrm { f } ( x ) |$$ stating the coordinates of the local maximum point and each local minimum point.
Edexcel P3 2023 January Q6
8 marks Moderate -0.3
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5abaa077-1da4-4023-b442-194f6972095b-16_652_835_292_616} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the graph with equation $$y = | 3 x - 5 a | - 2 a$$ where \(a\) is a positive constant.
The graph
  • cuts the \(y\)-axis at the point \(P\)
  • cuts the \(x\)-axis at the points \(Q\) and \(R\)
  • has a minimum point at \(S\)
    1. Find, in simplest form in terms of \(a\), the coordinates of
      1. point \(P\)
      2. points \(Q\) and \(R\)
      3. point \(S\)
    2. Find, in simplest form in terms of \(a\), the values of \(x\) for which
$$| 3 x - 5 a | - 2 a = | x - 2 a |$$
Edexcel P3 2024 January Q8
11 marks Standard +0.3
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{76989f19-2624-4e86-a8ee-4978dd1014c2-22_652_634_255_717} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} \section*{In this question you must show all stages of your working.} \section*{Solutions relying on calculator technology are not acceptable.} The graph shown in Figure 2 has equation $$y = a - | 2 x - b |$$ where \(a\) and \(b\) are positive constants, \(a > b\)
  1. Find, giving your answer in terms of \(a\) and \(b\),
    1. the coordinates of the maximum point of the graph,
    2. the coordinates of the point of intersection of the graph with the \(y\)-axis,
    3. the coordinates of the points of intersection of the graph with the \(x\)-axis. On page 24 there is a copy of Figure 2 called Diagram 1.
  2. On Diagram 1, sketch the graph with equation $$y = | x | - 1$$ Given that the graphs \(y = | x | - 1\) and \(y = a - | 2 x - b |\) intersect at \(x = - 3\) and \(x = 5\)
  3. find the value of \(a\) and the value of \(b\) \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{76989f19-2624-4e86-a8ee-4978dd1014c2-24_675_652_1959_712} \captionsetup{labelformat=empty} \caption{Diagram 1}
    \end{figure}
Edexcel P3 2022 June Q5
8 marks Standard +0.3
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{44035bf8-f54c-472a-b969-b4fa4fa3d203-14_668_812_258_566} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows part of the graph with equation \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = | k x - 9 | - 2 \quad x \in \mathbb { R }$$ and \(k\) is a positive constant. The graph intersects the \(y\)-axis at the point \(A\) and has a minimum point at \(B\) as shown.
    1. Find the \(y\) coordinate of \(A\)
    2. Find, in terms of \(k\), the \(x\) coordinate of \(B\)
  1. Find, in terms of \(k\), the range of values of \(x\) that satisfy the inequality $$| k x - 9 | - 2 < 0$$ Given that the line \(y = 3 - 2 x\) intersects the graph \(y = \mathrm { f } ( x )\) at two distinct points,
  2. find the range of possible values of \(k\)
Edexcel P3 2023 June Q6
9 marks Standard +0.3
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bef290fb-fbac-4c9c-981e-5e323ac7182e-14_752_794_251_639} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the graph \(y = \mathrm { f } ( x )\), where $$f ( x ) = 3 | x - 2 | - 10$$ The vertex of the graph is at point \(P\), shown in Figure 2.
  1. Find the coordinates of \(P\)
  2. Find \(\mathrm { ff } ( 0 )\)
  3. Solve the inequality $$3 | x - 2 | - 10 < 5 x + 10$$
  4. Solve the equation $$\mathrm { f } ( | x | ) = 0$$
Edexcel P3 2024 June Q1
6 marks Moderate -0.8
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5a695b86-1660-4c06-ac96-4cdb07af9a2e-02_520_474_246_797} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the graph with equation \(y = \mathrm { f } ( x )\) where $$f ( x ) = 2 | x - 5 | + 10$$ The point \(P\), shown in Figure 1, is the vertex of the graph.
  1. State the coordinates of \(P\)
  2. Use algebra to solve $$2 | x - 5 | + 10 > 6 x$$ (Solutions relying on calculator technology are not acceptable.)
  3. Find the point to which \(P\) is mapped, when the graph with equation \(y = \mathrm { f } ( x )\) is transformed to the graph with equation \(y = 3 \mathrm { f } ( x - 2 )\)
Edexcel P3 2020 October Q4
8 marks Standard +0.3
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{96948fd3-5438-4e95-b41b-2f649ca8dfac-10_780_839_123_557} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the graph with equation \(y = \mathrm { f } ( x )\) where $$\mathrm { f } ( x ) = 21 - 2 | 2 - x | \quad x \geqslant 0$$
  1. Find ff(6)
  2. Solve the equation \(\mathrm { f } ( x ) = 5 x\) Given that the equation \(\mathrm { f } ( x ) = k\), where \(k\) is a constant, has exactly two roots,
  3. state the set of possible values of \(k\). The graph with equation \(y = \mathrm { f } ( x )\) is transformed onto the graph with equation \(y = a \mathrm { f } ( x - b )\) The vertex of the graph with equation \(y = a \mathrm { f } ( x - b )\) is (6, 3). Given that \(a\) and \(b\) are constants,
  4. find the value of \(a\) and the value of \(b\). \includegraphics[max width=\textwidth, alt={}, center]{96948fd3-5438-4e95-b41b-2f649ca8dfac-11_2255_50_314_34}
Edexcel P3 2021 October Q2
10 marks Moderate -0.3
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9b0b8db0-79fd-4ad5-88c9-737447d9f894-06_570_604_255_673} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the graph with equation \(y = \mathrm { f } ( x )\), where $$f ( x ) = | 3 x - 13 | + 5 \quad x \in \mathbb { R }$$ The vertex of the graph is at point \(P\), as shown in Figure 1.
  1. State the coordinates of \(P\).
    1. State the range of f .
    2. Find the value of ff(4)
  2. Solve, using algebra and showing your working, $$16 - 2 x > | 3 x - 13 | + 5$$ The graph with equation \(y = \mathrm { f } ( x )\) is transformed onto the graph with equation \(y = a \mathrm { f } ( x + b )\) The vertex of the graph with equation \(y = a \mathrm { f } ( x + b )\) is \(( 4,20 )\) Given that \(a\) and \(b\) are constants,
  3. find the value of \(a\) and the value of \(b\).
Edexcel P3 2022 October Q7
12 marks Moderate -0.3
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{83e12fa4-1abb-4bea-bff4-8d36757bd9c3-20_624_798_219_575} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the graph of \(C _ { 1 }\) with equation $$y = 5 - | 3 x - 22 |$$
  1. Write down the coordinates of
    1. the vertex of \(C _ { 1 }\)
    2. the intersection of \(C _ { 1 }\) with the \(y\)-axis.
  2. Find the \(x\) coordinates of the intersections of \(C _ { 1 }\) with the \(x\)-axis. Diagram 1, shown on page 21, is a copy of Figure 3.
  3. On Diagram 1, sketch the curve \(C _ { 2 }\) with equation $$y = \frac { 1 } { 9 } x ^ { 2 } - 9$$ Identify clearly the coordinates of any points of intersection of \(C _ { 2 }\) with the coordinate axes.
  4. Find the coordinates of the points of intersection of \(C _ { 1 }\) and \(C _ { 2 }\) (Solutions relying entirely on calculator technology are not acceptable.) \includegraphics[max width=\textwidth, alt={}, center]{83e12fa4-1abb-4bea-bff4-8d36757bd9c3-21_629_803_1137_573} \section*{Diagram 1} Solutions relying entirely on calculator technology are not acceptable.
Edexcel P3 2018 Specimen Q3
5 marks Moderate -0.8
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d8e25332-3a45-43ca-a5b8-0a16f47f13b9-08_542_540_269_696} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the graph \(y = \mathrm { f } ( x )\) where $$\mathrm { f } ( x ) = 2 | 3 - x | + 5 \quad x \geqslant 0$$
  1. Solve the equation $$f ( x ) = \frac { 1 } { 2 } x + 30$$ Given that the equation \(\mathrm { f } ( x ) = k\), where \(k\) is a constant, has two distinct roots,
  2. state the set of possible values for \(k\).
    VIIIV SIHI NI JIIIM ION OCVIIV SIHI NI JAHAM ION OOVI4V SIHIL NI JIIIM ION OC
Edexcel C34 2014 January Q4
11 marks Moderate -0.3
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5b698944-41ac-4072-b5e1-c580b7752c39-10_606_613_285_278} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5b698944-41ac-4072-b5e1-c580b7752c39-10_602_608_287_1062} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 1 shows a sketch of part of the graph \(y = \mathrm { f } ( x )\), where $$f ( x ) = 2 | 3 - x | + 5 , \quad x \geqslant 0$$ Figure 2 shows a sketch of part of the graph \(y = \mathrm { g } ( x )\), where $$\operatorname { g } ( x ) = \frac { x + 9 } { 2 x + 3 } , \quad x \geqslant 0$$
  1. Find the value of \(\mathrm { fg } ( 1 )\)
  2. State the range of g
  3. Find \(\mathrm { g } ^ { - 1 } ( x )\) and state its domain. Given that the equation \(\mathrm { f } ( x ) = k\), where \(k\) is a constant, has exactly two roots,
  4. state the range of possible values of \(k\).
Edexcel C34 2017 January Q7
7 marks Moderate -0.3
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e30f0c28-1695-40a1-8e9a-6ea7e29042bf-12_458_433_264_781} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the graph of \(y = \mathrm { f } ( x ) , x \in \mathbb { R }\).
The point \(P \left( \frac { 1 } { 3 } , 0 \right)\) is the vertex of the graph.
The point \(Q ( 0,5 )\) is the intercept with the \(y\)-axis. Given that \(\mathrm { f } ( x ) = | a x + b |\), where \(a\) and \(b\) are constants,
    1. find all possible values for \(a\) and \(b\),
    2. hence find an equation for the graph.
  1. Sketch the graph with equation $$y = \mathrm { f } \left( \frac { 1 } { 2 } x \right) + 3$$ showing the coordinates of its vertex and its intercept with the \(y\)-axis.
Edexcel C34 2019 January Q12
5 marks Moderate -0.3
12. Given that \(k\) is a positive constant,
  1. sketch the graph with equation $$y = 2 | x | - k$$ Show on your sketch the coordinates of each point at which the graph crosses the \(x\)-axis and the \(y\)-axis.
  2. Find, in terms of \(k\), the values of \(x\) for which $$2 | x | - k = \frac { 1 } { 2 } x + \frac { 1 } { 4 } k$$
Edexcel C3 2014 January Q6
10 marks Moderate -0.3
  1. Given that \(a\) and \(b\) are constants and that \(0 < a < b\),
    1. on separate diagrams, sketch the graph with equation
      1. \(y = | 2 x + a |\),
      2. \(y = | 2 x + a | - b\).
    Show on each sketch the coordinates of each point at which the graph crosses or meets the axes.
  2. Solve, for \(x\), the equation $$| 2 x + a | - b = \frac { 1 } { 3 } x$$ giving any answers in terms of \(a\) and \(b\).
OCR MEI C3 Q8
3 marks Easy -1.3
8 Fig. 4 shows a sketch of the graph of \(y = 2 | x - 1 |\). It meets the \(x\) - and \(y\)-axes at ( \(a , 0\) ) and ( \(0 , b\) ) respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{125b76c1-5ab3-4645-a3c4-cf167a04f453-2_478_546_1299_834} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Find the values of \(a\) and \(b\).
OCR MEI C3 2009 June Q4
3 marks Easy -1.3
4 Fig. 4 shows a sketch of the graph of \(y = 2 | x - 1 |\). It meets the \(x\) - and \(y\)-axes at ( \(a , 0\) ) and ( \(0 , b\) ) respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1167a0e5-48c8-48e0-b2d1-76a50bad03ad-2_478_556_1247_792} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Find the values of \(a\) and \(b\).
OCR H240/01 2023 June Q5
8 marks Standard +0.3
5
  1. The function \(\mathrm { f } ( x )\) is defined for all values of \(x\) as \(\mathrm { f } ( x ) = | a x - b |\), where \(a\) and \(b\) are positive constants.
    1. The graph of \(y = \mathrm { f } ( x ) + c\), where \(c\) is a constant, has a vertex at \(( 3,1 )\) and crosses the \(y\)-axis at \(( 0,7 )\). Find the values of \(a , b\) and \(c\).
    2. Explain why \(\mathrm { f } ^ { - 1 } ( x )\) does not exist.
  2. The function \(\mathrm { g } ( x )\) is defined for \(x \geqslant \frac { q } { p }\) as \(\mathrm { g } ( x ) = | p x - q |\), where \(p\) and \(q\) are positive constants.
    1. Find, in terms of \(p\) and \(q\), an expression for \(\mathrm { g } ^ { - 1 } ( x )\), stating the domain of \(\mathrm { g } ^ { - 1 } ( x )\).
    2. State the set of values of \(p\) for which the equation \(\mathrm { g } ( x ) = \mathrm { g } ^ { - 1 } ( x )\) has no solutions.
Edexcel PMT Mocks Q11
8 marks Standard +0.3
  1. a. Sketch the graph of the function with equation
$$y = 11 - 2 | 2 - x |$$ Stating the coordinates of the maximum point and any points where the graph cuts the \(y\)-axis.
b. Solve the equation $$4 x = 11 - 2 | 2 - x |$$ A straight line \(l\) has equation \(y = k x + 13\), where \(k\) is a constant.
Given that \(l\) does not meet or intersect \(y = 11 - 2 | 2 - x |\) c. find the range of possible value of \(k\).
Edexcel Paper 1 2024 June Q6
6 marks Standard +0.3
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e116a86f-63e0-4e80-b49c-d9f3c819ce15-12_680_677_246_696} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the graph with equation $$y = 3 | x - 2 | + 5$$ The vertex of the graph is at the point \(P\), shown in Figure 1.
  1. Find the coordinates of \(P\).
  2. Solve the equation $$16 - 4 x = 3 | x - 2 | + 5$$ A line \(l\) has equation \(y = k x + 4\) where \(k\) is a constant.
    Given that \(l\) intersects \(y = 3 | x - 2 | + 5\) at 2 distinct points,
  3. find the range of values of \(k\).
Edexcel Paper 2 2020 October Q11
7 marks Standard +0.3
11. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e28350e9-5090-4079-97da-e669ef9a5a7a-30_677_817_251_621} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the graph with equation $$y = 2 | x + 4 | - 5$$ The vertex of the graph is at the point \(P\), shown in Figure 2.
  1. Find the coordinates of \(P\).
  2. Solve the equation $$3 x + 40 = 2 | x + 4 | - 5$$ A line \(l\) has equation \(y = a x\), where \(a\) is a constant.
    Given that \(l\) intersects \(y = 2 | x + 4 | - 5\) at least once,
  3. find the range of possible values of \(a\), writing your answer in set notation.
WJEC Unit 3 2024 June Q4
6 marks Moderate -0.8
4. A function \(f\) is given by \(f ( x ) = | 3 x + 4 |\).
  1. Sketch the graph of \(y = f ( x )\). Clearly label the coordinates of the point \(A\), where the graph meets the \(x\)-axis, and the coordinates of the point \(B\), where the graph cuts the \(y\)-axis.
  2. On a separate set of axes, sketch the graph of \(y = \frac { 1 } { 2 } f ( x ) - 6\), where the points \(A\) and \(B\) are transformed to the points \(A ^ { \prime }\) and \(B ^ { \prime }\).
    Clearly label the coordinates of the points \(A ^ { \prime }\) and \(B ^ { \prime }\).
AQA Paper 2 2019 June Q1
1 marks Easy -1.8
1 Identify the graph of \(y = 1 - | x + 2 |\) from the options below.
Tick ( \(\checkmark\) ) one box. \includegraphics[max width=\textwidth, alt={}, center]{838f0625-95e6-4ad4-b97b-3d3f77cc7f19-02_389_526_845_500}
B \includegraphics[max width=\textwidth, alt={}, center]{838f0625-95e6-4ad4-b97b-3d3f77cc7f19-02_362_442_1279_525} \includegraphics[max width=\textwidth, alt={}, center]{838f0625-95e6-4ad4-b97b-3d3f77cc7f19-02_113_116_977_1107}
C \includegraphics[max width=\textwidth, alt={}, center]{838f0625-95e6-4ad4-b97b-3d3f77cc7f19-02_496_704_1688_523}
D \includegraphics[max width=\textwidth, alt={}, center]{838f0625-95e6-4ad4-b97b-3d3f77cc7f19-02_474_686_2211_534}
AQA Paper 3 2023 June Q1
1 marks Easy -1.8
1 The graph of \(y = \mathrm { f } ( x )\) is shown below. \includegraphics[max width=\textwidth, alt={}, center]{6fba7e53-de46-460b-9bef-f1a6962f2e7d-02_771_1324_676_447} One of the four equations listed below is the equation of the graph \(y = \mathrm { f } ( x )\) Identify which one is the correct equation of the graph.
Tick ( \(\checkmark\) ) one box. $$\begin{aligned} & y = | x + 2 | + 3 \\ & y = | x + 2 | - 3 \\ & y = | x - 2 | + 3 \\ & y = | x - 2 | - 3 \end{aligned}$$ □