OCR H240/01 2023 June — Question 5

Exam BoardOCR
ModuleH240/01 (Pure Mathematics)
Year2023
SessionJune
TopicModulus function

5
  1. The function \(\mathrm { f } ( x )\) is defined for all values of \(x\) as \(\mathrm { f } ( x ) = | a x - b |\), where \(a\) and \(b\) are positive constants.
    1. The graph of \(y = \mathrm { f } ( x ) + c\), where \(c\) is a constant, has a vertex at \(( 3,1 )\) and crosses the \(y\)-axis at \(( 0,7 )\). Find the values of \(a , b\) and \(c\).
    2. Explain why \(\mathrm { f } ^ { - 1 } ( x )\) does not exist.
  2. The function \(\mathrm { g } ( x )\) is defined for \(x \geqslant \frac { q } { p }\) as \(\mathrm { g } ( x ) = | p x - q |\), where \(p\) and \(q\) are positive constants.
    1. Find, in terms of \(p\) and \(q\), an expression for \(\mathrm { g } ^ { - 1 } ( x )\), stating the domain of \(\mathrm { g } ^ { - 1 } ( x )\).
    2. State the set of values of \(p\) for which the equation \(\mathrm { g } ( x ) = \mathrm { g } ^ { - 1 } ( x )\) has no solutions.