Variable mass rocket motion

A question is this type if and only if it involves a rocket ejecting fuel at constant rate and speed relative to the rocket, requiring the variable mass equation of motion.

11 questions · Challenging +1.5

Sort by: Default | Easiest first | Hardest first
OCR MEI M4 2008 June Q1
12 marks Challenging +1.2
1 A rocket in deep space starts from rest and moves in a straight line. The initial mass of the rocket is \(m _ { 0 }\) and the propulsion system ejects matter at a constant mass rate \(k\) with constant speed \(u\) relative to the rocket. At time \(t\) the speed of the rocket is \(v\).
  1. Show that while mass is being ejected from the rocket, \(\left( m _ { 0 } - k t \right) \frac { \mathrm { d } v } { \mathrm {~d} t } = u k\).
  2. Hence find an expression for \(v\) in terms of \(t\).
  3. Find the speed of the rocket when its mass is \(\frac { 1 } { 3 } m _ { 0 }\).
OCR MEI M4 2010 June Q1
12 marks Challenging +1.2
1 At time \(t\) a rocket has mass \(m\) and is moving vertically upwards with velocity \(v\). The propulsion system ejects matter at a constant speed \(u\) relative to the rocket. The only additional force acting on the rocket is its weight.
  1. Derive the differential equation \(m \frac { \mathrm {~d} v } { \mathrm {~d} t } + u \frac { \mathrm {~d} m } { \mathrm {~d} t } = - m g\). The rocket has initial mass \(m _ { 0 }\) of which \(75 \%\) is fuel. It is launched from rest. Matter is ejected at a constant mass rate \(k\).
  2. Assuming that the acceleration due to gravity is constant, find the speed of the rocket at the instant when all the fuel is burnt.
OCR MEI M4 2012 June Q1
11 marks Challenging +1.2
1 A rocket in deep space has initial mass \(m _ { 0 }\) and is moving in a straight line at speed \(v _ { 0 }\). It fires its engine in the direction opposite to the motion in order to increase its speed. The propulsion system ejects matter at a constant mass rate \(k\) with constant speed \(u\) relative to the rocket. At time \(t\) after the engines are fired, the speed of the rocket is \(v\).
  1. Show that while mass is being ejected from the rocket, \(\left( m _ { 0 } - k t \right) \frac { \mathrm { d } v } { \mathrm {~d} t } = u k\).
  2. Hence find an expression for \(v\) at time \(t\).
OCR MEI M4 2013 June Q1
11 marks Challenging +1.2
1 An empty railway truck of mass \(m _ { 0 }\) is moving along a straight horizontal track at speed \(v _ { 0 }\). The point P is at the front of the truck. The horizontal forces on the truck are negligible. As P passes a fixed point O , sand starts to fall vertically into the truck at a constant mass rate \(k\). At time \(t\) after P passes O the speed of the truck is \(v\) and \(\mathrm { OP } = x\).
  1. Find an expression for \(v\) in terms of \(m _ { 0 } , v _ { 0 } , k\) and \(t\), and show that \(x = \frac { m _ { 0 } v _ { 0 } } { k } \ln \left( 1 + \frac { k t } { m _ { 0 } } \right)\).
  2. Find the speed of the truck and the distance OP when the mass of sand in the truck is \(2 m _ { 0 }\).
Edexcel M5 Q5
14 marks Challenging +1.8
5. A rocket is launched vertically upwards from rest. Initially, the total mass of the rocket and its fuel is 1000 kg . The rocket burns fuel at a rate of \(10 \mathrm {~kg} \mathrm {~s} ^ { - 1 }\). The burnt fuel is ejected vertically downwards with a speed of \(2000 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) relative to the rocket, and burning stops after one minute. At time \(t\) seconds, \(t \leq 60\), after the launch, the speed of the rocket is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Air resistance is assumed to be negligible.
  1. Show that $$- 9.8 ( 100 - t ) = ( 100 - t ) \frac { \mathrm { d } v } { \mathrm {~d} t } - 2000 .$$
  2. Find the speed of the rocket when burning stops.
Edexcel M5 2006 January Q7
15 marks Challenging +1.8
7. At time \(t = 0\), a small body is projected vertically upwards. While ascending it picks up small drops of moisture from the atmosphere. The drops of moisture are at rest before they are picked up. At time \(t\), the combined body \(P\) has mass \(m\) and speed \(v\).
  1. Show that, while \(P\) is moving upwards, \(m \frac { \mathrm {~d} v } { \mathrm {~d} t } + v \frac { \mathrm {~d} m } { \mathrm {~d} t } = - m g\). The initial mass of \(P\) is \(M\), and \(m = M \mathrm { e } ^ { k t }\), where \(k\) is a positive constant.
  2. Show that, while \(P\) is moving upwards, \(\frac { \mathrm { d } } { \mathrm { d } t } \left( v \mathrm { e } ^ { k t } \right) = - g \mathrm { e } ^ { k t }\). Given that the initial projection speed of \(P\) is \(\frac { g } { 2 k }\),
  3. find, in terms of \(M\), the mass of \(P\) when it reaches its highest point.
    (Total 15 marks)
Edexcel M5 2002 June Q5
14 marks Challenging +1.8
5. A rocket is launched vertically upwards from rest. Initially, the total mass of the rocket and its fuel is 1000 kg . The rocket burns fuel at a rate of \(10 \mathrm {~kg} \mathrm {~s} ^ { - 1 }\). The burnt fuel is ejected vertically downwards with a speed of \(2000 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) relative to the rocket, and burning stops after one minute. At time \(t\) seconds, \(t \leq 60\), after the launch, the speed of the rocket is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Air resistance is assumed to be negligible.
  1. Show that $$- 9.8 ( 100 - t ) = ( 100 - t ) \frac { \mathrm { d } v } { \mathrm {~d} t } - 2000$$ (8)
  2. Find the speed of the rocket when burning stops.
    (6) \section*{6.} \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{4c585ec7-7b3e-4ff8-b7c2-83f58ad82ae9-4_316_929_391_573}
    \end{figure} A rough uniform rod, of mass \(m\) and length \(4 a\), is rod is held on a rough horizontal table. The rod is perpendicular to the edge of the table and a length \(3 a\) projects horizontally over the edge, as shown in Fig. 1.
Edexcel M5 2012 June Q2
10 marks Challenging +1.2
2. A rocket, with initial mass 1500 kg , including 600 kg of fuel, is launched vertically upwards from rest. The rocket burns fuel at a rate of \(15 \mathrm {~kg} \mathrm {~s} ^ { - 1 }\) and the burnt fuel is ejected vertically downwards with a speed of \(1000 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) relative to the rocket. At time \(t\) seconds after launch \(( t \leqslant 40 )\) the rocket has mass \(m \mathrm {~kg}\) and velocity \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Show that $$\frac { \mathrm { d } v } { \mathrm {~d} t } + \frac { 1000 } { m } \frac { \mathrm {~d} m } { \mathrm {~d} t } = - 9.8$$
  2. Find \(v\) at time \(t , 0 \leqslant t \leqslant 40\)
Edexcel M5 2013 June Q3
14 marks Challenging +1.2
  1. A spacecraft is moving in a straight line in deep space. The spacecraft moves by ejecting burnt fuel backwards at a constant speed of \(2000 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) relative to the spacecraft. The burnt fuel is ejected at a constant rate of \(c \mathrm {~kg} \mathrm {~s} ^ { - 1 }\). At time \(t\) seconds the total mass of the spacecraft, including fuel, is \(m \mathrm {~kg}\) and the speed of the spacecraft is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
    1. Show that, while the spacecraft is ejecting burnt fuel,
    $$m \frac { \mathrm {~d} v } { \mathrm {~d} t } = 2000 c$$ At time \(t = 0\), the mass of the spacecraft is \(M _ { 0 } \mathrm {~kg}\) and the speed of the spacecraft is \(2000 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). When \(t = 50\), the spacecraft is still ejecting burnt fuel and its speed is \(6000 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  2. Find \(c\) in terms of \(M _ { 0 }\).
Edexcel M5 2016 June Q6
12 marks Challenging +1.8
6. A firework rocket, excluding its fuel, has mass \(m _ { 0 } \mathrm {~kg}\). The rocket moves vertically upwards by ejecting burnt fuel vertically downwards with constant speed \(u \mathrm {~m} \mathrm {~s} ^ { - 1 } , u > 24.5\), relative to the rocket. The rocket starts from rest on the ground at time \(t = 0\). At time \(t\) seconds, \(t \leqslant 2\), the speed of the rocket is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and the mass of the rocket including its fuel is \(m _ { 0 } ( 5 - 2 t ) \mathrm { kg }\). It is assumed that air resistance is negligible and the acceleration due to gravity is constant.
  1. Show that, for \(t \leqslant 2\) $$\frac { \mathrm { d } v } { \mathrm {~d} t } = \frac { 2 u } { 5 - 2 t } - 9.8$$
  2. Find the speed of the rocket at the instant when all of its fuel has been burnt.
Edexcel M5 Q5
11 marks Challenging +1.8
5. A spaceship is moving in deep space with no external forces acting on it. Initially it has total mass \(M\) and is moving with speed \(V\). The spaceship reduces its speed to \(\frac { 2 } { 3 } V\) by ejecting fuel from its front end with a speed of \(c\) relative to itself and in the same direction as its own motion. Find the mass of fuel ejected.
(11 marks)