1 An empty railway truck of mass \(m _ { 0 }\) is moving along a straight horizontal track at speed \(v _ { 0 }\). The point P is at the front of the truck. The horizontal forces on the truck are negligible. As P passes a fixed point O , sand starts to fall vertically into the truck at a constant mass rate \(k\). At time \(t\) after P passes O the speed of the truck is \(v\) and \(\mathrm { OP } = x\).
- Find an expression for \(v\) in terms of \(m _ { 0 } , v _ { 0 } , k\) and \(t\), and show that \(x = \frac { m _ { 0 } v _ { 0 } } { k } \ln \left( 1 + \frac { k t } { m _ { 0 } } \right)\).
- Find the speed of the truck and the distance OP when the mass of sand in the truck is \(2 m _ { 0 }\).