5. A rocket is launched vertically upwards from rest. Initially, the total mass of the rocket and its fuel is 1000 kg . The rocket burns fuel at a rate of \(10 \mathrm {~kg} \mathrm {~s} ^ { - 1 }\). The burnt fuel is ejected vertically downwards with a speed of \(2000 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) relative to the rocket, and burning stops after one minute. At time \(t\) seconds, \(t \leq 60\), after the launch, the speed of the rocket is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Air resistance is assumed to be negligible.
- Show that
$$- 9.8 ( 100 - t ) = ( 100 - t ) \frac { \mathrm { d } v } { \mathrm {~d} t } - 2000 .$$
- Find the speed of the rocket when burning stops.