1 At time \(t\) a rocket has mass \(m\) and is moving vertically upwards with velocity \(v\). The propulsion system ejects matter at a constant speed \(u\) relative to the rocket. The only additional force acting on the rocket is its weight.
- Derive the differential equation \(m \frac { \mathrm {~d} v } { \mathrm {~d} t } + u \frac { \mathrm {~d} m } { \mathrm {~d} t } = - m g\).
The rocket has initial mass \(m _ { 0 }\) of which \(75 \%\) is fuel. It is launched from rest. Matter is ejected at a constant mass rate \(k\).
- Assuming that the acceleration due to gravity is constant, find the speed of the rocket at the instant when all the fuel is burnt.