Arc length of parametric curve

A question is this type if and only if it requires finding the length of a parametric curve using the arc length formula involving (dx/dt)² + (dy/dt)².

23 questions · Challenging +1.3

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2022 November Q3
6 marks Challenging +1.2
3 The curve \(C\) has parametric equations $$\mathrm { x } = \mathrm { e } ^ { \mathrm { t } } - \frac { 1 } { 3 } \mathrm { t } ^ { 3 } , \quad \mathrm { y } = 4 \mathrm { e } ^ { \frac { 1 } { 2 } \mathrm { t } } ( \mathrm { t } - 2 ) , \quad \text { for } 0 \leqslant t \leqslant 2$$ Find, in terms of e , the length of \(C\).
CAIE Further Paper 2 2023 November Q5
10 marks Standard +0.8
5 The curve \(C\) has parametric equations $$\mathrm { x } = \frac { 2 } { 3 } \mathrm { t } ^ { \frac { 3 } { 2 } } - 2 \mathrm { t } ^ { \frac { 1 } { 2 } } , \quad \mathrm { y } = 2 \mathrm { t } + 5 , \quad \text { for } 0 < t \leqslant 3$$
  1. Find the exact length of \(C\).
  2. Find the set of values of \(t\) for which \(\frac { d ^ { 2 } y } { d x ^ { 2 } } > 0\).
CAIE Further Paper 2 2024 November Q3
7 marks Challenging +1.2
3 The curve \(C\) has parametric equations $$x = \frac { 1 } { 2 } \mathrm { e } ^ { 2 t } - \frac { 1 } { 3 } t ^ { 3 } - \frac { 1 } { 2 } , \quad y = 2 \mathrm { e } ^ { t } ( t - 1 ) , \quad \text { for } 0 \leqslant t \leqslant 1 .$$ Find the exact length of \(C\) .
\includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-07_2726_35_97_20}
CAIE Further Paper 2 2020 Specimen Q5
10 marks Challenging +1.2
5 Th cn e \(C\) has parametric equations $$x = \mathrm { e } ^ { t } - 4 t + 3 \quad y = 8 \mathrm { e } ^ { \frac { 1 } { 2 } t } , \quad \text { f } \mathbf { D } \quad 0 \leqslant t \leqslant 2$$
  1. Find, in terms of e, the length of \(C\).
  2. Find, in terms of \(\pi\) and \(e\), the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians ab the \(x\)-ax s.
    [0pt] [\$
Edexcel FP3 2016 June Q2
7 marks Challenging +1.2
  1. The curve \(C\) has equation
$$y = \frac { x ^ { 2 } } { 8 } - \ln x , \quad 2 \leqslant x \leqslant 3$$ Find the length of the curve \(C\) giving your answer in the form \(p + \ln q\), where \(p\) and \(q\) are rational numbers to be found.
Edexcel FP3 Specimen Q3
6 marks Challenging +1.2
3. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{6c256e1b-455d-42fb-81f2-a9a8ed1148bc-2_503_801_998_566}
\end{figure} The parametric equations of the curve \(C\) shown in Figure 1 are $$x = a ( t - \sin t ) , \quad y = a ( 1 - \cos t ) , \quad 0 \leq t \leq 2 \pi$$ Find, by using integration, the length of \(C\).
OCR MEI FP3 2006 June Q3
24 marks Challenging +1.8
3 The curve \(C\) has parametric equations \(x = 2 t ^ { 3 } - 6 t , y = 6 t ^ { 2 }\).
  1. Find the length of the arc of \(C\) for which \(0 \leqslant t \leqslant 1\).
  2. Find the area of the surface generated when the arc of \(C\) for which \(0 \leqslant t \leqslant 1\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
  3. Show that the equation of the normal to \(C\) at the point with parameter \(t\) is $$y = \frac { 1 } { 2 } \left( \frac { 1 } { t } - t \right) x + 2 t ^ { 2 } + t ^ { 4 } + 3$$
  4. Find the cartesian equation of the envelope of the normals to \(C\).
  5. The point \(\mathrm { P } ( 64 , a )\) is the centre of curvature corresponding to a point on \(C\). Find \(a\).
OCR MEI FP3 2008 June Q3
24 marks Challenging +1.2
3 The curve \(C\) has parametric equations \(x = 8 t ^ { 3 } , y = 9 t ^ { 2 } - 2 t ^ { 4 }\), for \(t \geqslant 0\).
  1. Show that \(\dot { x } ^ { 2 } + \dot { y } ^ { 2 } = \left( 18 t + 8 t ^ { 3 } \right) ^ { 2 }\). Find the length of the arc of \(C\) for which \(0 \leqslant t \leqslant 2\).
  2. Find the area of the surface generated when the arc of \(C\) for which \(0 \leqslant t \leqslant 2\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
  3. Show that the curvature at a general point on \(C\) is \(\frac { - 6 } { t \left( 4 t ^ { 2 } + 9 \right) ^ { 2 } }\).
  4. Find the coordinates of the centre of curvature corresponding to the point on \(C\) where \(t = 1\).
OCR MEI FP3 2012 June Q3
24 marks Challenging +1.8
3 A curve has parametric equations $$x = a \left( 1 - \cos ^ { 3 } \theta \right) , \quad y = a \sin ^ { 3 } \theta , \quad \text { for } 0 \leqslant \theta \leqslant \frac { \pi } { 3 }$$ where \(a\) is a positive constant.
The arc length from the origin to a general point on the curve is denoted by \(s\), and \(\psi\) is the acute angle defined by \(\tan \psi = \frac { \mathrm { d } y } { \mathrm {~d} x }\).
  1. Express \(s\) and \(\psi\) in terms of \(\theta\), and hence show that the intrinsic equation of the curve is $$s = \frac { 3 } { 2 } a \sin ^ { 2 } \psi$$
  2. For the point on the curve given by \(\theta = \frac { \pi } { 6 }\), find the radius of curvature and the coordinates of the centre of curvature.
  3. Find the area of the curved surface generated when the curve is rotated through \(2 \pi\) radians about the \(y\)-axis.
OCR MEI FP3 2009 June Q3
24 marks Challenging +1.8
3 A curve has parametric equations \(x = a ( \theta + \sin \theta ) , y = a ( 1 - \cos \theta )\), for \(0 \leqslant \theta \leqslant \pi\), where \(a\) is a positive constant.
  1. Show that the arc length \(s\) from the origin to a general point on the curve is given by \(s = 4 a \sin \frac { 1 } { 2 } \theta\).
  2. Find the intrinsic equation of the curve giving \(s\) in terms of \(a\) and \(\psi\), where \(\tan \psi = \frac { \mathrm { d } y } { \mathrm {~d} x }\).
  3. Hence, or otherwise, show that the radius of curvature at a point on the curve is \(4 a \cos \frac { 1 } { 2 } \theta\).
  4. Find the coordinates of the centre of curvature corresponding to the point on the curve where \(\theta = \frac { 2 } { 3 } \pi\).
  5. Find the area of the surface generated when the curve is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2010 June Q3
7 marks Challenging +1.8
3 At any point \(( x , y )\) on the curve \(C\), $$\frac { \mathrm { d } x } { \mathrm {~d} t } = t \sqrt { } \left( t ^ { 2 } + 4 \right) \quad \text { and } \quad \frac { \mathrm { d } y } { \mathrm {~d} t } = - t \sqrt { } \left( 4 - t ^ { 2 } \right)$$ where the parameter \(t\) is such that \(0 \leqslant t \leqslant 2\). Show that the length of \(C\) is \(4 \sqrt { } 2\). Given that \(y = 0\) when \(t = 2\), determine the area of the surface generated when \(C\) is rotated through one complete revolution about the \(x\)-axis, leaving your answer in an exact form.
CAIE FP1 2011 June Q7
11 marks Challenging +1.2
7 A curve \(C\) has parametric equations \(x = \mathrm { e } ^ { t } \cos t , y = \mathrm { e } ^ { t } \sin t\), for \(0 \leqslant t \leqslant \pi\). Find the arc length of \(C\). Find the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2014 June Q8
10 marks Challenging +1.2
8 The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = t - \frac { 1 } { 3 } t ^ { 3 } , \quad \text { for } 0 \leqslant t \leqslant 1 .$$ Find
  1. the arc length of \(C\),
  2. the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2015 June Q9
11 marks Challenging +1.2
9 The curve \(C\) has parametric equations $$x = 4 t + 2 t ^ { \frac { 3 } { 2 } } , \quad y = 4 t - 2 t ^ { \frac { 3 } { 2 } } , \quad \text { for } 0 \leqslant t \leqslant 4$$ Find the arc length of \(C\), giving your answer correct to 3 significant figures. Find the mean value of \(y\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant 32\).
CAIE FP1 2016 June Q11 EITHER
Challenging +1.8
A curve \(C\) has parametric equations $$x = \mathrm { e } ^ { 2 t } \cos 2 t , \quad y = \mathrm { e } ^ { 2 t } \sin 2 t , \quad \text { for } - \frac { 1 } { 2 } \pi \leqslant t \leqslant \frac { 1 } { 2 } \pi .$$ Find the arc length of \(C\). Find the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2018 June Q1
5 marks Standard +0.8
1 The curve \(C\) is defined parametrically by $$x = \mathrm { e } ^ { t } - t , \quad y = 4 \mathrm { e } ^ { \frac { 1 } { 2 } t }$$ Find the length of the arc of \(C\) from the point where \(t = 0\) to the point where \(t = 3\).
CAIE FP1 2008 November Q1
5 marks
1 The curve \(C\) is defined parametrically by $$x = t ^ { 4 } - 4 \ln t , \quad y = 4 t ^ { 2 }$$ Show that the length of the arc of \(C\) from the point where \(t = 2\) to the point where \(t = 4\) is $$240 + 4 \ln 2 .$$
CAIE FP1 2014 November Q2
6 marks
2 A curve \(C\) has parametric equations $$x = \mathrm { e } ^ { t } \cos t , \quad y = \mathrm { e } ^ { t } \sin t , \quad \text { for } 0 \leqslant t \leqslant \frac { 1 } { 2 } \pi$$ Find the arc length of \(C\).
OCR MEI FP3 2016 June Q3
24 marks Challenging +1.2
3 Fig. 3 shows the curve with parametric equations \(x = t - 3 t ^ { 3 } , y = 1 + 3 t ^ { 2 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{07eaad51-dc00-44d2-8bff-8652d62902ec-4_634_1294_388_386} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Show that the values of \(t\) where the curve cuts the \(y\)-axis are \(t = 0 , \pm \frac { 1 } { \sqrt { 3 } }\). Write down the corresponding values of \(y\).
  2. Find the radius and centre of curvature when \(t = \frac { 1 } { \sqrt { 3 } }\). The arc of the curve given by \(0 \leqslant t \leqslant \frac { 1 } { \sqrt { 3 } }\) is denoted by \(C\).
  3. Find the length of \(C\).
  4. Show that the area of the curved surface generated when \(C\) is rotated about the \(y\)-axis through \(2 \pi\) radians is \(\frac { \pi } { 3 }\).
AQA FP2 2011 January Q6
10 marks Challenging +1.2
6
  1. Given that $$x = \ln ( \sec t + \tan t ) - \sin t$$ show that $$\frac { \mathrm { d } x } { \mathrm {~d} t } = \sin t \tan t$$
  2. A curve is given parametrically by the equations $$x = \ln ( \sec t + \tan t ) - \sin t , \quad y = \cos t$$ The length of the arc of the curve between the points where \(t = 0\) and \(t = \frac { \pi } { 3 }\) is denoted by \(s\). Show that \(s = \ln p\), where \(p\) is an integer.
AQA FP2 2013 January Q6
8 marks Standard +0.8
6 A curve is defined parametrically by $$x = t ^ { 3 } + 5 , \quad y = 6 t ^ { 2 } - 1$$ The arc length between the points where \(t = 0\) and \(t = 3\) on the curve is \(s\).
  1. Show that \(s = \int _ { 0 } ^ { 3 } 3 t \sqrt { t ^ { 2 } + A } \mathrm {~d} t\), stating the value of the constant \(A\).
  2. Hence show that \(s = 61\).
    \(7 \quad\) The polynomial \(\mathrm { p } ( n )\) is given by \(\mathrm { p } ( n ) = ( n - 1 ) ^ { 3 } + n ^ { 3 } + ( n + 1 ) ^ { 3 }\).
    1. Show that \(\mathrm { p } ( k + 1 ) - \mathrm { p } ( k )\), where \(k\) is a positive integer, is a multiple of 9 .
    2. Prove by induction that \(\mathrm { p } ( n )\) is a multiple of 9 for all integers \(n \geqslant 1\).
  3. Using the result from part (a)(ii), show that \(n \left( n ^ { 2 } + 2 \right)\) is a multiple of 3 for any positive integer \(n\).
OCR Further Additional Pure 2018 September Q2
10 marks Challenging +1.2
2 In this question, you must show detailed reasoning.
A curve is defined parametrically by \(x = t ^ { 3 } - 3 t + 1 , y = 3 t ^ { 2 } - 1\), for \(0 \leqslant t \leqslant 5\). Find, in exact form,
  1. the length of the curve,
  2. the area of the surface generated when the curve is rotated completely about the \(x\)-axis.
AQA Further Paper 1 2024 June Q15
5 marks Standard +0.8
15 A curve is defined parametrically by the equations $$\begin{array} { l l } x = \frac { 3 } { 2 } t ^ { 3 } + 5 & \\ y = t ^ { \frac { 9 } { 2 } } & ( t \geq 0 ) \end{array}$$ Show that the arc length of the curve from \(t = 0\) to \(t = 2\) is equal to 26 units.