OCR MEI FP3 2016 June — Question 3

Exam BoardOCR MEI
ModuleFP3 (Further Pure Mathematics 3)
Year2016
SessionJune
TopicParametric equations

3 Fig. 3 shows the curve with parametric equations \(x = t - 3 t ^ { 3 } , y = 1 + 3 t ^ { 2 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{07eaad51-dc00-44d2-8bff-8652d62902ec-4_634_1294_388_386} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Show that the values of \(t\) where the curve cuts the \(y\)-axis are \(t = 0 , \pm \frac { 1 } { \sqrt { 3 } }\). Write down the corresponding values of \(y\).
  2. Find the radius and centre of curvature when \(t = \frac { 1 } { \sqrt { 3 } }\). The arc of the curve given by \(0 \leqslant t \leqslant \frac { 1 } { \sqrt { 3 } }\) is denoted by \(C\).
  3. Find the length of \(C\).
  4. Show that the area of the curved surface generated when \(C\) is rotated about the \(y\)-axis through \(2 \pi\) radians is \(\frac { \pi } { 3 }\).