OCR MEI FP3 2008 June — Question 3

Exam BoardOCR MEI
ModuleFP3 (Further Pure Mathematics 3)
Year2008
SessionJune
TopicParametric equations

3 The curve \(C\) has parametric equations \(x = 8 t ^ { 3 } , y = 9 t ^ { 2 } - 2 t ^ { 4 }\), for \(t \geqslant 0\).
  1. Show that \(\dot { x } ^ { 2 } + \dot { y } ^ { 2 } = \left( 18 t + 8 t ^ { 3 } \right) ^ { 2 }\). Find the length of the arc of \(C\) for which \(0 \leqslant t \leqslant 2\).
  2. Find the area of the surface generated when the arc of \(C\) for which \(0 \leqslant t \leqslant 2\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
  3. Show that the curvature at a general point on \(C\) is \(\frac { - 6 } { t \left( 4 t ^ { 2 } + 9 \right) ^ { 2 } }\).
  4. Find the coordinates of the centre of curvature corresponding to the point on \(C\) where \(t = 1\).