Surface area of revolution

A question is this type if and only if it asks to find the surface area generated when a parametric curve is rotated about an axis.

14 questions · Challenging +1.6

Sort by: Default | Easiest first | Hardest first
Edexcel F3 2022 January Q2
8 marks Challenging +1.8
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cfc4afbd-3353-4f9f-b954-cb5178ebcf6c-06_624_872_210_543} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C\) with parametric equations $$x = \ln ( \sec \theta + \tan \theta ) - \sin \theta \quad y = \cos \theta \quad 0 \leqslant \theta \leqslant \frac { \pi } { 4 }$$ The curve \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis and is used to form a solid of revolution \(S\). Using calculus, show that the total surface area of \(S\) is given by $$\frac { \pi } { 2 } ( p + q \sqrt { 2 } )$$ where \(p\) and \(q\) are integers to be determined.
Edexcel F3 2014 June Q7
13 marks Challenging +1.8
7. The curve \(C\) has parametric equations $$x = 3 t ^ { 2 } , \quad y = 12 t , \quad 0 \leqslant t \leqslant 4$$ The curve \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
  1. Show that the area of the surface generated is $$\pi ( a \sqrt { 5 } + b )$$ where \(a\) and \(b\) are constants to be found.
  2. Show that the length of the curve \(C\) is given by $$k \int _ { 0 } ^ { 4 } \sqrt { \left( t ^ { 2 } + 4 \right) } \mathrm { d } t$$ where \(k\) is a constant to be found.
  3. Use the substitution \(t = 2 \sinh \theta\) to show that the exact value of the length of the curve \(C\) is $$24 \sqrt { 5 } + 12 \ln ( 2 + \sqrt { 5 } )$$
Edexcel F3 2016 June Q7
11 marks Challenging +1.8
7. The curve \(C\) has parametric equations $$x = 3 t ^ { 4 } , \quad y = 4 t ^ { 3 } , \quad 0 \leqslant t \leqslant 1$$ The curve \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. The area of the curved surface generated is \(S\).
  1. Show that $$S = k \pi \int _ { 0 } ^ { 1 } t ^ { 5 } \left( t ^ { 2 } + 1 \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} t$$ where \(k\) is a constant to be found.
  2. Use the substitution \(u ^ { 2 } = t ^ { 2 } + 1\) to find the value of \(S\), giving your answer in the form \(p \pi ( 11 \sqrt { 2 } - 4 )\) where \(p\) is a rational number to be found.
Edexcel F3 2017 June Q8
10 marks
8. The curve \(C\) has parametric equations $$x = \theta - \sin \theta , \quad y = 1 - \cos \theta , \quad 0 \leqslant \theta \leqslant 2 \pi$$ The curve \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. The area of the curved surface generated is given by \(S\).
  1. Show that $$S = 2 \pi \sqrt { 2 } \int _ { 0 } ^ { 2 \pi } ( 1 - \cos \theta ) ^ { \frac { 3 } { 2 } } \mathrm {~d} \theta$$
  2. Hence find the exact value of \(S\).
Edexcel F3 2022 June Q5
7 marks Challenging +1.2
  1. A curve has parametric equations
$$x = 4 \mathrm { e } ^ { \frac { 1 } { 2 } t } \quad y = \mathrm { e } ^ { t } - t \quad 0 \leqslant t \leqslant 4$$ The curve is rotated through \(2 \pi\) radians about the \(x\)-axis.
Show that the area of the curved surface generated is $$\pi \left( \mathrm { e } ^ { 8 } + A \mathrm { e } ^ { 4 } + B \right)$$ where \(A\) and \(B\) are constants to be determined.
Edexcel FP3 2009 June Q8
11 marks Challenging +1.8
  1. A curve, which is part of an ellipse, has parametric equations
$$x = 3 \cos \theta , \quad y = 5 \sin \theta , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 } .$$ The curve is rotated through \(2 \pi\) radians about the \(x\)-axis.
  1. Show that the area of the surface generated is given by the integral $$k \pi \int _ { 0 } ^ { \alpha } \sqrt { } \left( 16 c ^ { 2 } + 9 \right) \mathrm { d } c , \quad \text { where } c = \cos \theta$$ and where \(k\) and \(\alpha\) are constants to be found.
  2. Using the substitution \(c = \frac { 3 } { 4 } \sinh u\), or otherwise, evaluate the integral, showing all of your working and giving the final answer to 3 significant figures.
CAIE FP1 2010 June Q4
7 marks Challenging +1.8
4 The parametric equations of a curve are $$x = \cos t + t \sin t , \quad y = \sin t - t \cos t$$ The arc of the curve joining the point where \(t = 0\) to the point where \(t = \frac { 1 } { 2 } \pi\) is rotated about the \(x\)-axis through one complete revolution. Find the area of the surface generated, leaving your result in terms of \(\pi\).
CAIE FP1 2014 June Q6
10 marks Challenging +1.2
6 The curve \(C\) has parametric equations $$x = \mathrm { e } ^ { t } - 4 t + 3 , \quad y = 8 \mathrm { e } ^ { \frac { 1 } { 2 } t } , \quad \text { for } 0 \leqslant t \leqslant 2$$
  1. Find, in terms of e , the length of \(C\).
  2. Find, in terms of \(\pi\) and e , the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2017 June Q5
8 marks Challenging +1.2
5 A curve \(C\) has parametric equations $$x = \frac { 2 } { 5 } t ^ { \frac { 5 } { 2 } } - 2 t ^ { \frac { 1 } { 2 } } , \quad y = \frac { 4 } { 3 } t ^ { \frac { 3 } { 2 } } , \quad \text { for } 1 \leqslant t \leqslant 4$$
  1. Find the exact value of the arc length of \(C\).
  2. Find also the exact value of the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2019 June Q5
8 marks Challenging +1.2
5 A curve \(C\) is defined parametrically by $$x = \frac { 2 } { \mathrm { e } ^ { t } + \mathrm { e } ^ { - t } } \quad \text { and } \quad y = \frac { \mathrm { e } ^ { t } - \mathrm { e } ^ { - t } } { \mathrm { e } ^ { t } + \mathrm { e } ^ { - t } }$$ for \(0 \leqslant t \leqslant 1\). The area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(S\).
  1. Show that \(S = 4 \pi \int _ { 0 } ^ { 1 } \frac { \mathrm { e } ^ { t } - \mathrm { e } ^ { - t } } { \left( \mathrm { e } ^ { t } + \mathrm { e } ^ { - t } \right) ^ { 2 } } \mathrm {~d} t\).
  2. Using the substitution \(u = \mathrm { e } ^ { t } + \mathrm { e } ^ { - t }\), or otherwise, find \(S\) in terms of \(\pi\) and e .
CAIE FP1 2004 November Q2
5 marks Challenging +1.8
2 The curve \(C\) is defined parametrically by $$x = a \cos ^ { 3 } t , \quad y = a \sin ^ { 3 } t , \quad 0 \leqslant t \leqslant \frac { 1 } { 2 } \pi$$ where \(a\) is a positive constant. Find the area of the surface generated when \(C\) is rotated through one complete revolution about the \(x\)-axis.
CAIE FP1 2012 November Q8
10 marks Challenging +1.2
8 The curve \(C\) has parametric equations $$x = \frac { 1 } { 3 } t ^ { 3 } - \ln t , \quad y = \frac { 4 } { 3 } t ^ { \frac { 3 } { 2 } }$$ for \(1 \leqslant t \leqslant 3\). Find the arc length of \(C\). Find also the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2007 November Q1
4 marks
1 A curve is defined parametrically by $$x = a t ^ { 2 } , \quad y = a t$$ where \(a\) is a positive constant. The part of the curve joining the point where \(t = 0\) to the point where \(t = \sqrt { } 2\) is rotated through one complete revolution about the \(x\)-axis. Show that the area of the surface obtained is \(\frac { 13 } { 3 } \pi a ^ { 2 }\).
CAIE FP1 2012 November Q6
7 marks Challenging +1.8
6 The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = \frac { 1 } { 4 } t ^ { 4 } - \ln t$$ for \(1 \leqslant t \leqslant 2\). Find the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(y\)-axis.