Edexcel F3 2014 June — Question 7

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2014
SessionJune
TopicParametric equations

7. The curve \(C\) has parametric equations $$x = 3 t ^ { 2 } , \quad y = 12 t , \quad 0 \leqslant t \leqslant 4$$ The curve \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
  1. Show that the area of the surface generated is $$\pi ( a \sqrt { 5 } + b )$$ where \(a\) and \(b\) are constants to be found.
  2. Show that the length of the curve \(C\) is given by $$k \int _ { 0 } ^ { 4 } \sqrt { \left( t ^ { 2 } + 4 \right) } \mathrm { d } t$$ where \(k\) is a constant to be found.
  3. Use the substitution \(t = 2 \sinh \theta\) to show that the exact value of the length of the curve \(C\) is $$24 \sqrt { 5 } + 12 \ln ( 2 + \sqrt { 5 } )$$