Connected particles on inclined plane

A question is this type if and only if it involves particles connected by a string where at least one particle is on an inclined plane and you must find acceleration, tension, or motion using Newton's second law with components.

10 questions · Standard +0.5

Sort by: Default | Easiest first | Hardest first
CAIE M1 2010 June Q4
8 marks Standard +0.3
4
\includegraphics[max width=\textwidth, alt={}, center]{dafc271d-a77b-4401-9170-e13e484d6e5f-3_499_567_260_788} The diagram shows a vertical cross-section of a triangular prism which is fixed so that two of its faces are inclined at \(60 ^ { \circ }\) to the horizontal. One of these faces is smooth and one is rough. Particles \(A\) and \(B\), of masses 0.36 kg and 0.24 kg respectively, are attached to the ends of a light inextensible string which passes over a small smooth pulley fixed at the highest point of the cross-section. \(B\) is held at rest at a point of the cross-section on the rough face and \(A\) hangs freely in contact with the smooth face (see diagram). \(B\) is released and starts to move up the face with acceleration \(0.25 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  1. By considering the motion of \(A\), show that the tension in the string is 3.03 N , correct to 3 significant figures.
  2. Find the coefficient of friction between \(B\) and the rough face, correct to 2 significant figures.
CAIE M1 2012 June Q6
9 marks Standard +0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{01e73486-5a95-4e65-bf18-518d1adc7cfb-3_465_849_1475_648} Particles \(P\) and \(Q\), of masses 0.6 kg and 0.4 kg respectively, are attached to the ends of a light inextensible string. The string passes over a small smooth pulley which is fixed at the top of a vertical cross-section of a triangular prism. The base of the prism is fixed on horizontal ground and each of the sloping sides is smooth. Each sloping side makes an angle \(\theta\) with the ground, where \(\sin \theta = 0.8\). Initially the particles are held at rest on the sloping sides, with the string taut (see diagram). The particles are released and move along lines of greatest slope.
  1. Find the tension in the string and the acceleration of the particles while both are moving. The speed of \(P\) when it reaches the ground is \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). On reaching the ground \(P\) comes to rest and remains at rest. \(Q\) continues to move up the slope but does not reach the pulley.
  2. Find the time taken from the instant that the particles are released until \(Q\) reaches its greatest height above the ground.
CAIE M1 2013 June Q5
8 marks Standard +0.3
5
\includegraphics[max width=\textwidth, alt={}, center]{2c628138-0729-4160-a95c-d6ab0f199cc5-3_275_663_258_742} A light inextensible string has a particle \(A\) of mass 0.26 kg attached to one end and a particle \(B\) of mass 0.54 kg attached to the other end. The particle \(A\) is held at rest on a rough plane inclined at angle \(\alpha\) to the horizontal, where \(\sin \alpha = \frac { 5 } { 13 }\). The string is taut and parallel to a line of greatest slope of the plane. The string passes over a small smooth pulley at the top of the plane. Particle \(B\) hangs at rest vertically below the pulley (see diagram). The coefficient of friction between \(A\) and the plane is 0.2 . Particle \(A\) is released and the particles start to move.
  1. Find the magnitude of the acceleration of the particles and the tension in the string. Particle \(A\) reaches the pulley 0.4 s after starting to move.
  2. Find the distance moved by each of the particles.
CAIE M1 2014 June Q7
9 marks Standard +0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{139371b7-e142-4ed6-bff3-3ca4c32b9c6b-4_342_1257_255_445} A smooth inclined plane of length 160 cm is fixed with one end at a height of 40 cm above the other end, which is on horizontal ground. Particles \(P\) and \(Q\), of masses 0.76 kg and 0.49 kg respectively, are attached to the ends of a light inextensible string which passes over a small smooth pulley fixed at the top of the plane. Particle \(P\) is held at rest on the same line of greatest slope as the pulley and \(Q\) hangs vertically below the pulley at a height of 30 cm above the ground (see diagram). \(P\) is released from rest. It starts to move up the plane and does not reach the pulley. Find
  1. the acceleration of the particles and the tension in the string before \(Q\) reaches the ground,
  2. the speed with which \(Q\) reaches the ground,
  3. the total distance travelled by \(P\) before it comes to instantaneous rest.
CAIE M1 2018 June Q7
14 marks Standard +0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{16640429-198d-4ea9-a2f6-6e2ef6ac1b4a-12_282_1106_264_523} As shown in the diagram, a particle \(A\) of mass 1.6 kg lies on a horizontal plane and a particle \(B\) of mass 2.4 kg lies on a plane inclined at an angle of \(30 ^ { \circ }\) to the horizontal. The particles are connected by a light inextensible string which passes over a small smooth pulley \(P\) fixed at the top of the inclined plane. The distance \(A P\) is 2.5 m and the distance of \(B\) from the bottom of the inclined plane is 1 m . There is a barrier at the bottom of the inclined plane preventing any further motion of \(B\). The part \(B P\) of the string is parallel to a line of greatest slope of the inclined plane. The particles are released from rest with both parts of the string taut.
  1. Given that both planes are smooth, find the acceleration of \(A\) and the tension in the string.
  2. It is given instead that the horizontal plane is rough and that the coefficient of friction between \(A\) and the horizontal plane is 0.2 . The inclined plane is smooth. Find the total distance travelled by \(A\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE M1 2015 November Q5
8 marks Standard +0.3
5
\includegraphics[max width=\textwidth, alt={}, center]{48f66bd5-33c1-4ce9-85f9-69faf10e871c-3_259_828_1288_660} A smooth inclined plane of length 2.5 m is fixed with one end on the horizontal floor and the other end at a height of 0.7 m above the floor. Particles \(P\) and \(Q\), of masses 0.5 kg and 0.1 kg respectively, are attached to the ends of a light inextensible string which passes over a small smooth pulley fixed at the top of the plane. Particle \(Q\) is held at rest on the floor vertically below the pulley. The string is taut and \(P\) is at rest on the plane (see diagram). \(Q\) is released and starts to move vertically upwards towards the pulley and \(P\) moves down the plane.
  1. Find the tension in the string and the magnitude of the acceleration of the particles before \(Q\) reaches the pulley. At the instant just before \(Q\) reaches the pulley the string breaks; \(P\) continues to move down the plane and reaches the floor with a speed of \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  2. Find the length of the string.
Edexcel M1 2006 January Q7
14 marks Standard +0.3
7. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 3} \includegraphics[alt={},max width=\textwidth]{8d3635b1-2d01-48c1-a19b-37e44d593112-12_232_647_292_653}
\end{figure} A fixed wedge has two plane faces, each inclined at \(30 ^ { \circ }\) to the horizontal. Two particles \(A\) and \(B\), of mass \(3 m\) and \(m\) respectively, are attached to the ends of a light inextensible string. Each particle moves on one of the plane faces of the wedge. The string passes over a small smooth light pulley fixed at the top of the wedge. The face on which \(A\) moves is smooth. The face on which \(B\) moves is rough. The coefficient of friction between \(B\) and this face is \(\mu\). Particle \(A\) is held at rest with the string taut. The string lies in the same vertical plane as lines of greatest slope on each plane face of the wedge, as shown in Figure 3. The particles are released from rest and start to move. Particle \(A\) moves downwards and \(B\) moves upwards. The accelerations of \(A\) and \(B\) each have magnitude \(\frac { 1 } { 10 } g\).
  1. By considering the motion of \(A\), find, in terms of \(m\) and \(g\), the tension in the string.
  2. By considering the motion of \(B\), find the value of \(\mu\).
  3. Find the resultant force exerted by the string on the pulley, giving its magnitude and direction.
Edexcel Paper 3 2019 June Q3
12 marks Standard +0.3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8399dae8-1b9d-4564-a95b-7ab857368b86-06_339_812_242_628} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Two blocks, \(A\) and \(B\), of masses \(2 m\) and \(3 m\) respectively, are attached to the ends of a light string. Initially \(A\) is held at rest on a fixed rough plane.
The plane is inclined at angle \(\alpha\) to the horizontal ground, where \(\tan \alpha = \frac { 5 } { 12 }\)
The string passes over a small smooth pulley, \(P\), fixed at the top of the plane.
The part of the string from \(A\) to \(P\) is parallel to a line of greatest slope of the plane. Block \(B\) hangs freely below \(P\), as shown in Figure 1. The coefficient of friction between \(A\) and the plane is \(\frac { 2 } { 3 }\)
The blocks are released from rest with the string taut and \(A\) moves up the plane.
The tension in the string immediately after the blocks are released is \(T\).
The blocks are modelled as particles and the string is modelled as being inextensible.
  1. Show that \(T = \frac { 12 m g } { 5 }\) After \(B\) reaches the ground, \(A\) continues to move up the plane until it comes to rest before reaching \(P\).
  2. Determine whether \(A\) will remain at rest, carefully justifying your answer.
  3. Suggest two refinements to the model that would make it more realistic.
OCR H240/03 2020 November Q9
13 marks Standard +0.3
  1. For the motion before \(B\) hits the ground, show that the acceleration of \(B\) is \(0.48 \mathrm {~ms} ^ { - 2 }\).
  2. For the motion before \(B\) hits the ground, show that the tension in the string is 23.3 N .
  3. Determine the value of \(\mu\). After \(B\) hits the ground, \(A\) continues to travel up the plane before coming to instantaneous rest before it reaches \(P\).
  4. Determine the distance that \(A\) travels from the instant that \(B\) hits the ground until \(A\) comes to instantaneous rest.
    \includegraphics[max width=\textwidth, alt={}, center]{373fa8e4-9c10-4fcf-9e00-e497161b4c6d-09_917_784_244_242} The diagram shows a wall-mounted light. It consists of a rod \(A B\) of mass 0.25 kg and length 0.8 m which is freely hinged to a vertical wall at \(A\), and a lamp of mass 0.5 kg fixed at \(B\). The system is held in equilibrium by a chain \(C D\) whose end \(C\) is attached to the midpoint of \(A B\). The end \(D\) is fixed to the wall a distance 0.4 m vertically above \(A\). The rod \(A B\) makes an angle of \(60 ^ { \circ }\) with the downward vertical. The chain is modelled as a light inextensible string, the rod is modelled as uniform and the lamp is modelled as a particle.
  5. By taking moments about \(A\), determine the tension in the chain.
    1. Determine the magnitude of the force exerted on the rod at \(A\).
    2. Calculate the direction of the force exerted on the rod at \(A\).
  6. Suggest one improvement that could be made to the model to make it more realistic.
Edexcel AEA 2024 June Q6
18 marks Hard +2.3
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a8e9db6b-dfad-4278-82d8-a8fa5ba61008-20_234_1357_244_354} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a block \(A\) with mass \(4 m\) and a block \(B\) with mass \(5 m\).
Block \(A\) is at rest on a rough plane inclined at an angle \(\alpha\) to the horizontal.
Block \(B\) is at rest on a rough plane inclined at an angle \(\beta\) to the horizontal.
The blocks are connected by a light inextensible string which passes over a small smooth pulley at the top of each plane. A small smooth ring \(C\), of mass \(8 m\), is threaded on the string between the pulleys so that \(A , B\) and \(C\) all lie in the same vertical plane. The part of the string between \(A\) and its pulley lies along a line of greatest slope of the plane of angle \(\alpha\). The part of the string between \(B\) and its pulley lies along a line of greatest slope of the plane of angle \(\beta\). The angle between the vertical and the string between each pulley and the ring \(C\) is \(\gamma\).
The two blocks, \(A\) and \(B\), are modelled as particles.
Given that
  • \(\tan \alpha = \frac { 5 } { 12 }\) and \(\tan \beta = \frac { 7 } { 24 }\) and \(\tan \gamma = \frac { 3 } { 4 }\)
  • the coefficient of friction, \(\mu\), is the same between each block and its plane
  • one of the blocks is on the point of sliding up its plane
  • the tension in the string is \(T\)
    1. determine, in terms of \(m\) and \(g\), an expression for \(T\),
    2. draw a diagram showing the forces on block \(A\), clearly labelling each of the forces acting on the block,
    3. determine the value of \(\mu\), giving a justification for your answer.
      \includegraphics[max width=\textwidth, alt={}, center]{a8e9db6b-dfad-4278-82d8-a8fa5ba61008-20_2266_50_312_1978}