CAIE
Further Paper 4
2022
November
Q3
8 marks
Standard +0.3
3 A scientist is investigating the masses of birds of a certain species in country \(X\) and country \(Y\). She takes a random sample of 50 birds of this species from country \(X\) and a random sample of 80 birds of this species from country \(Y\). She records their masses in \(\mathrm { kg } , x\) and \(y\), respectively. Her results are summarised as follows.
$$\sum x = 75.5 \quad \sum x ^ { 2 } = 115.2 \quad \sum y = 116.8 \quad \sum y ^ { 2 } = 172.6$$
The population mean masses of these birds in countries \(X\) and \(Y\) are \(\mu _ { x } \mathrm {~kg}\) and \(\mu _ { y } \mathrm {~kg}\) respectively.
Test, at the \(5 \%\) significance level, the null hypothesis \(\mu _ { \mathrm { x } } = \mu _ { \mathrm { y } }\) against the alternative hypothesis \(\mu _ { \mathrm { x } } > \mu _ { \mathrm { y } }\). State your conclusion in the context of the question.
CAIE
Further Paper 4
2024
November
Q5
9 marks
Challenging +1.2
5 Dev owns a small company which produces bottles of juice. He uses two machines, \(X\) and \(Y\), to fill empty bottles with juice. Dev is investigating the volumes of juice in the bottles. He chooses a random sample of 35 bottles filled by machine \(X\) and a random sample of 60 bottles filled by machine \(Y\). The volumes of juice, \(x\) and \(y\) respectively, measured in suitable units, are summarised by
$$\sum x = 30.8 , \quad \sum x ^ { 2 } = 29.0 , \quad \sum y = 62.4 , \quad \sum y ^ { 2 } = 76.8 .$$
Dev claims that the mean volume of juice in bottles filled by machine \(Y\) is greater than the mean volume of juice in bottles filled by machine \(X\). A test at the \(\alpha \%\) significance level suggests that there is sufficient evidence to support Dev's claim.
Find the set of possible values of \(\alpha\).
\includegraphics[max width=\textwidth, alt={}, center]{b9cbf607-4f40-41bb-8374-6b2c39f945ac-10_2717_33_109_2014}
\includegraphics[max width=\textwidth, alt={}, center]{b9cbf607-4f40-41bb-8374-6b2c39f945ac-11_2726_35_97_20}
CAIE
FP2
2009
June
Q11 OR
Standard +0.8
A study was made of the acidity levels in farmland on opposite sides of an island. The levels were measured at six randomly chosen points on the eastern side and at five randomly chosen points on the western side. The values obtained, in suitable units, are denoted by \(x _ { E }\) and \(x _ { W }\) respectively. The sample means \(\bar { x } _ { E }\) and \(\bar { x } _ { W }\), and unbiased estimates of the two population variances, \(s _ { E } ^ { 2 }\) and \(s _ { W } ^ { 2 }\), are as follows.
$$\bar { x } _ { E } = 5.035 , s _ { E } ^ { 2 } = 0.0231 , \bar { x } _ { W } = 4.782 , s _ { W } ^ { 2 } = 0.0195 .$$
The population means on the eastern and western sides are denoted by \(\mu _ { E }\) and \(\mu _ { W }\) respectively. State suitable hypotheses for a test for a difference between the mean acidity levels on the two sides of the island.
Stating any required assumptions, obtain the rejection region for a test at the \(5 \%\) significance level of whether the mean acidity levels differ on the two sides of the island. Give the conclusion of the test.
Find the largest value of \(a\) for which the samples above provide evidence at the \(5 \%\) significance level that \(\mu _ { E } - \mu _ { W } > a\).
CAIE
FP2
2011
June
Q9
9 marks
Challenging +1.2
9 Mr Lee asserts that boys are slower than girls at completing a particular mathematical puzzle. In order to test his assertion, a random sample of 40 boys and a random sample of 60 girls are selected from a large group of students who attempted the puzzle. The times taken by the boys, \(b\) minutes, and the times taken by the girls, \(g\) minutes, are summarised as follows.
$$\Sigma b = 92.0 \quad \Sigma b ^ { 2 } = 216.5 \quad \Sigma g = 129.8 \quad \Sigma g ^ { 2 } = 288.8$$
Test at the \(2.5 \%\) significance level whether this evidence supports Mr Lee's assertion.
CAIE
FP2
2013
June
Q9
14 marks
Challenging +1.2
9 A gardener \(P\) claims that a new type of fruit tree produces a higher annual mass of fruit than the type that he has previously grown. The old type of tree produced 5.2 kg of fruit per tree, on average. A random sample of 10 trees of the new type is chosen. The masses, \(x \mathrm {~kg}\), of fruit produced are summarised as follows.
$$\Sigma x = 61.0 \quad \Sigma x ^ { 2 } = 384.0$$
Test, at the \(5 \%\) significance level, whether gardener \(P\) 's claim is justified, assuming a normal distribution.
Another gardener \(Q\) has his own type of fruit tree. The masses, \(y \mathrm {~kg}\), of fruit produced by a random sample of 10 trees grown by gardener \(Q\) are summarised as follows.
$$\Sigma y = 70.0 \quad \Sigma y ^ { 2 } = 500.6$$
Test, at the \(5 \%\) significance level, whether the mean mass of fruit produced by gardener \(Q\) 's trees is greater than the mean mass of fruit produced by gardener \(P\) 's trees. You may assume that both distributions are normal and you should state any additional assumption.
CAIE
FP2
2014
June
Q8
9 marks
Standard +0.3
8 Weekly expenses claimed by employees at two different branches, \(A\) and \(B\), of a large company are being compared. Expenses claimed by an employee at branch \(A\) and by an employee at branch \(B\) are denoted by \(\\) x\( and \)\\( y\) respectively. A random sample of 60 employees from branch \(A\) and a random sample of 50 employees from branch \(B\) give the following summarised data.
$$\Sigma x = 6060 \quad \Sigma x ^ { 2 } = 626220 \quad \Sigma y = 4750 \quad \Sigma y ^ { 2 } = 464500$$
Using a \(2 \%\) significance level, test whether, on average, employees from branch \(A\) claim the same as employees from branch \(B\).
CAIE
FP2
2015
June
Q10 OR
Challenging +1.3
The times taken, in hours, by cyclists from two different clubs, \(A\) and \(B\), to complete a 50 km time trial are being compared. The times taken by a cyclist from club \(A\) and by a cyclist from club \(B\) are denoted by \(t _ { A }\) and \(t _ { B }\) respectively. A random sample of 50 cyclists from \(A\) and a random sample of 60 cyclists from \(B\) give the following summarised data.
$$\Sigma t _ { A } = 102.0 \quad \Sigma t _ { A } ^ { 2 } = 215.18 \quad \Sigma t _ { B } = 129.0 \quad \Sigma t _ { B } ^ { 2 } = 282.3$$
Using a 5\% significance level, test whether, on average, cyclists from club \(A\) take less time to complete the time trial than cyclists from club \(B\).
A test at the \(\alpha \%\) significance level shows that there is evidence that the population mean time for cyclists from club \(B\) exceeds the population mean time for cyclists from club \(A\) by more than 0.05 hours. Find the set of possible values of \(\alpha\).
CAIE
FP2
2017
June
Q9
10 marks
Standard +0.8
9 Two fish farmers \(X\) and \(Y\) produce a particular type of fish. Farmer \(X\) chooses a random sample of 8 of his fish and records the masses, \(x \mathrm {~kg}\), as follows.
$$\begin{array} { l l l l l l l l }
1.2 & 1.4 & 0.8 & 2.1 & 1.8 & 2.6 & 1.5 & 2.0
\end{array}$$
Farmer \(Y\) chooses a random sample of 10 of his fish and summarises the masses, \(y \mathrm {~kg}\), as follows.
$$\Sigma y = 20.2 \quad \Sigma y ^ { 2 } = 44.6$$
You should assume that both distributions are normal with equal variances. Test at the \(10 \%\) significance level whether the mean mass of fish produced by farmer \(X\) differs from the mean mass of fish produced by farmer \(Y\).
[0pt]
[10]
CAIE
FP2
2019
June
Q11 OR
Challenging +1.2
A company produces packets of sweets. Two different machines, \(A\) and \(B\), are used to fill the packets. The manager decides to assess the performance of the two machines. He selects a random sample of 50 packets filled by machine \(A\) and a random sample of 60 packets filled by machine \(B\). The masses of sweets, \(x \mathrm {~kg}\), in packets filled by machine \(A\) and the masses of sweets, \(y \mathrm {~kg}\), in packets filled by machine \(B\) are summarised as follows.
$$\Sigma x = 22.4 \quad \Sigma x ^ { 2 } = 10.1 \quad \Sigma y = 28.8 \quad \Sigma y ^ { 2 } = 16.3$$
A test at the \(\alpha \%\) significance level provides evidence that the mean mass of sweets in packets filled by machine \(A\) is less than the mean mass of sweets in packets filled by machine \(B\). Find the set of possible values of \(\alpha\).
If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE
FP2
2008
November
Q11 OR
Challenging +1.2
A perfume manufacturer had one bottle-filling machine, but because of increased sales a second machine was obtained. In order to compare the performance of the two machines, a random sample of 50 bottles filled by the first machine and a random sample of 60 bottles filled by the second machine were checked. The volumes of the contents from the first machine, \(x _ { 1 } \mathrm { ml }\), and from the second machine, \(x _ { 2 } \mathrm { ml }\), are summarised by
$$\Sigma x _ { 1 } = 1492.0 , \quad \Sigma x _ { 1 } ^ { 2 } = 44529.52 , \quad \Sigma x _ { 2 } = 1803.6 , \quad \Sigma x _ { 2 } ^ { 2 } = 54220.84 .$$
The volumes have distributions with means \(\mu _ { 1 } \mathrm { ml }\) and \(\mu _ { 2 } \mathrm { ml }\) for the first and second machines respectively. Test, at the \(2 \%\) significance level, whether \(\mu _ { 2 }\) is greater than \(\mu _ { 1 }\).
Find the set of values of \(\alpha\) for which there would be evidence at the \(\alpha \%\) significance level that \(\mu _ { 2 } - \mu _ { 1 } > 0.1\).
CAIE
FP2
2012
November
Q9
14 marks
Standard +0.8
9 The leaves from oak trees growing in two different areas \(A\) and \(B\) are being measured. The lengths, in cm , of a random sample of 7 oak leaves from area \(A\) are
$$6.2 , \quad 8.3 , \quad 7.8 , \quad 9.3 , \quad 10.2 , \quad 8.4 , \quad 7.2$$
Assuming that the distribution is normal, find a 95\% confidence interval for the mean length of oak leaves from area \(A\).
The lengths, in cm, of a random sample of 5 oak leaves from area \(B\) are
$$5.9 , \quad 7.4 , \quad 6.8 , \quad 8.2 , \quad 8.7$$
Making suitable assumptions, which should be stated, test, at the \(5 \%\) significance level, whether the mean length of oak leaves from area \(A\) is greater than the mean length of oak leaves from area \(B\). [9]
CAIE
FP2
2012
November
Q9
10 marks
Standard +0.3
9 Experiments are conducted to test the breaking strength of each of two types of rope, \(P\) and \(Q\). A random sample of 50 ropes of type \(P\) and a random sample of 70 ropes of type \(Q\) are selected. The breaking strengths, \(p\) and \(q\), measured in appropriate units, are summarised as follows.
$$\Sigma p = 321.2 \quad \Sigma p ^ { 2 } = 2120.0 \quad \Sigma q = 475.3 \quad \Sigma q ^ { 2 } = 3310.0$$
Test, at the \(10 \%\) significance level, whether the mean breaking strengths of type \(P\) and type \(Q\) ropes are the same.