| Exam Board | CAIE |
| Module | Further Paper 4 (Further Paper 4) |
| Year | 2022 |
| Session | November |
| Topic | Hypothesis test of a normal distribution |
3 A scientist is investigating the masses of birds of a certain species in country \(X\) and country \(Y\). She takes a random sample of 50 birds of this species from country \(X\) and a random sample of 80 birds of this species from country \(Y\). She records their masses in \(\mathrm { kg } , x\) and \(y\), respectively. Her results are summarised as follows.
$$\sum x = 75.5 \quad \sum x ^ { 2 } = 115.2 \quad \sum y = 116.8 \quad \sum y ^ { 2 } = 172.6$$
The population mean masses of these birds in countries \(X\) and \(Y\) are \(\mu _ { x } \mathrm {~kg}\) and \(\mu _ { y } \mathrm {~kg}\) respectively.
Test, at the \(5 \%\) significance level, the null hypothesis \(\mu _ { \mathrm { x } } = \mu _ { \mathrm { y } }\) against the alternative hypothesis \(\mu _ { \mathrm { x } } > \mu _ { \mathrm { y } }\). State your conclusion in the context of the question.