OCR S3 2013 June — Question 7

Exam BoardOCR
ModuleS3 (Statistics 3)
Year2013
SessionJune
TopicHypothesis test of a normal distribution

7 Two machines \(A\) and \(B\) both pack cartons in a factory. The mean packing times are compared by timing the packing of 10 randomly chosen cartons from machine \(A\) and 8 randomly chosen cartons from machine \(B\). The times, \(t\) seconds, taken to pack these cartons are summarised below.
Sample size\(\sum t\)\(\sum t ^ { 2 }\)
Machine \(A\)10221.44920.9
Machine \(B\)8199.24980.3
The packing times have independent normal distributions.
  1. Stating a necessary assumption, carry out a test, at the \(1 \%\) significance level, of whether the population mean packing times differ for the two machines.
  2. Find the largest possible value of the constant \(c\) for which there is evidence at the \(1 \%\) significance level that \(\mu _ { B } - \mu _ { A } > c\), where \(\mu _ { B }\) and \(\mu _ { A }\) denote the respective population mean packing times in seconds.