| Exam Board | CAIE |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2008 |
| Session | November |
| Topic | Hypothesis test of a normal distribution |
A perfume manufacturer had one bottle-filling machine, but because of increased sales a second machine was obtained. In order to compare the performance of the two machines, a random sample of 50 bottles filled by the first machine and a random sample of 60 bottles filled by the second machine were checked. The volumes of the contents from the first machine, \(x _ { 1 } \mathrm { ml }\), and from the second machine, \(x _ { 2 } \mathrm { ml }\), are summarised by
$$\Sigma x _ { 1 } = 1492.0 , \quad \Sigma x _ { 1 } ^ { 2 } = 44529.52 , \quad \Sigma x _ { 2 } = 1803.6 , \quad \Sigma x _ { 2 } ^ { 2 } = 54220.84 .$$
The volumes have distributions with means \(\mu _ { 1 } \mathrm { ml }\) and \(\mu _ { 2 } \mathrm { ml }\) for the first and second machines respectively. Test, at the \(2 \%\) significance level, whether \(\mu _ { 2 }\) is greater than \(\mu _ { 1 }\).
Find the set of values of \(\alpha\) for which there would be evidence at the \(\alpha \%\) significance level that \(\mu _ { 2 } - \mu _ { 1 } > 0.1\).