One-sample z-test, variance known

Test a hypothesis about the population mean when the population variance (or standard deviation) is known and given, using the standard normal distribution.

56 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
AQA S2 2012 January Q2
13 marks Standard +0.3
2
  1. A particular bowling club has a large number of members. Their ages may be modelled by a normal random variable, \(X\), with standard deviation 7.5 years. On 30 June 2010, Ted, the club secretary, concerned about the ageing membership, selected a random sample of 16 members and calculated their mean age to be 65.0 years.
    1. Carry out a hypothesis test, at the \(5 \%\) level of significance, to determine whether the mean age of the club's members has changed from its value of 61.4 years on 30 June 2000.
    2. Comment on the likely number of members who were under the age of 25 on 30 June 2010, giving a numerical reason for your answer.
  2. During 2011, in an attempt to encourage greater participation in the sport, the club ran a recruitment drive. After the recruitment drive, the ages of members of the bowling club may be modelled by a normal random variable, \(Y\) years, with mean \(\mu\) and standard deviation \(\sigma\). The ages, \(y\) years, of a random sample of 12 such members are summarised below. $$\sum y = 702 \quad \text { and } \quad \sum ( y - \bar { y } ) ^ { 2 } = 88.25$$
    1. Construct a \(90 \%\) confidence interval for \(\mu\), giving the limits to one decimal place.
    2. Use your confidence interval to state, with a reason, whether the recruitment drive lowered the average age of the club's members.
AQA S2 2005 June Q8
9 marks Moderate -0.3
8 The mean age of people attending a large concert is claimed to be 35 years. A random sample of 100 people attending the concert was taken and their mean age was found to be 37.9 years.
  1. Given that the standard deviation of the ages of the people attending the concert is 12 years, test, at the \(1 \%\) level of significance, the claim that the mean age is 35 years.
    (7 marks)
  2. Explain, in the context of this question, the meaning of a Type II error.
    (2 marks)
AQA S2 2008 June Q3
6 marks Moderate -0.3
3 Alan's company produces packets of crisps. The standard deviation of the weight of a packet of crisps is known to be 2.5 grams. Alan believes that, due to the extra demand on the production line at a busy time of the year, the mean weight of packets of crisps is not equal to the target weight of 34.5 grams. In an experiment set up to investigate Alan's belief, the weights of a random sample of 50 packets of crisps were recorded. The mean weight of this sample is 35.1 grams. Investigate Alan's belief at the \(5 \%\) level of significance.
AQA S2 2011 June Q5
13 marks Standard +0.3
5
  1. The lifetime of a new 16-watt energy-saving light bulb may be modelled by a normal random variable with standard deviation 640 hours. A random sample of 25 bulbs, taken by the manufacturer from this distribution, has a mean lifetime of 19700 hours. Carry out a hypothesis test, at the \(1 \%\) level of significance, to determine whether the mean lifetime has changed from 20000 hours.
  2. The lifetime of a new 11-watt energy-saving light bulb may be modelled by a normal random variable with mean \(\mu\) hours and standard deviation \(\sigma\) hours. The manufacturer claims that the mean lifetime of these energy-saving bulbs is 10000 hours. Christine, from a consumer organisation, believes that this is an overestimate. To investigate her belief, she carries out a hypothesis test at the \(5 \%\) level of significance based on the null hypothesis \(\mathrm { H } _ { 0 } : \mu = 10000\).
    1. State the alternative hypothesis that should be used by Christine in this test.
    2. From the lifetimes of a random sample of 16 bulbs, Christine finds that \(s = 500\) hours. Determine the range of values for the sample mean which would lead Christine not to reject her null hypothesis.
    3. It was later revealed that \(\mu = 10000\). State which type of error, if any, was made by Christine if she concluded that her null hypothesis should not be rejected.
      (l mark)
AQA S2 2012 June Q2
8 marks Moderate -0.3
2 The times taken to complete a round of golf at Slowpace Golf Club may be modelled by a random variable with mean \(\mu\) hours and standard deviation 1.1 hours. Julian claims that, on average, the time taken to complete a round of golf at Slowpace Golf Club is greater than 4 hours. The times of 40 randomly selected completed rounds of golf at Slowpace Golf Club result in a mean of 4.2 hours.
  1. Investigate Julian's claim at the \(5 \%\) level of significance.
  2. If the actual mean time taken to complete a round of golf at Slowpace Golf Club is 4.5 hours, determine whether a Type I error, a Type II error or neither was made in the test conducted in part (a). Give a reason for your answer.
AQA S2 2015 June Q4
11 marks Standard +0.3
4 Wellgrove village has a main road running through it that has a 40 mph speed limit. The villagers were concerned that many vehicles travelled too fast through the village, and so they set up a device for measuring the speed of vehicles on this main road. This device indicated that the mean speed of vehicles travelling through Wellgrove was 44.1 mph . In an attempt to reduce the mean speed of vehicles travelling through Wellgrove, life-size photographs of a police officer were erected next to the road on the approaches to the village. The speed, \(X \mathrm { mph }\), of a sample of 100 vehicles was then measured and the following data obtained. $$\sum x = 4327.0 \quad \sum ( x - \bar { x } ) ^ { 2 } = 925.71$$
  1. State an assumption that must be made about the sample in order to carry out a hypothesis test to investigate whether the desired reduction in mean speed had occurred.
  2. Given that the assumption that you stated in part (a) is valid, carry out such a test, using the \(1 \%\) level of significance.
  3. Explain, in the context of this question, the meaning of:
    1. a Type I error;
    2. a Type II error.
      [0pt] [2 marks]
AQA S2 2016 June Q6
16 marks Standard +0.3
6 Gerald is a scientist who studies sand lizards. He believes that sand lizards on islands are, on average, shorter than those on the mainland. The population of sand lizards on the mainland has a mean length of 18.2 cm and a standard deviation of 1.8 cm . Gerald visited three islands, \(\mathrm { A } , \mathrm { B }\) and C , and measured the length, \(X\) centimetres, of each of a sample of \(n\) sand lizards on each island. The samples may be regarded as random. The data are shown in the table.
AQA S3 2015 June Q6
16 marks Challenging +1.2
6
  1. The independent random variables \(S\) and \(L\) have means \(\mu _ { S }\) and \(\mu _ { L }\) respectively, and a common variance of \(\sigma ^ { 2 }\). The variable \(\bar { S }\) denotes the mean of a random sample of \(n\) observations on \(S\) and the variable \(\bar { L }\) denotes the mean of a random sample of \(n\) observations on \(L\). Find a simplified expression, in terms of \(\sigma ^ { 2 }\), for the variance of \(\bar { L } - 2 \bar { S }\).
  2. A machine fills both small bottles and large bottles with shower gel. It is known that the volume of shower gel delivered by the machine is normally distributed with a standard deviation of 8 ml .
    1. A random sample of 25 small bottles filled by the machine contained a mean volume of \(\bar { s } = 258 \mathrm { ml }\) of shower gel. An independent random sample of 25 large bottles filled by the machine contained a mean volume of \(\bar { l } = 522 \mathrm { ml }\) of shower gel. Investigate, at the \(10 \%\) level of significance, the hypothesis that the mean volume of shower gel in a large bottle is more than twice that in a small bottle.
      [0pt] [7 marks]
    2. Deduce that, for the test of the hypothesis in part (b)(i), the critical value of \(\bar { L } - 2 \bar { S }\) is 4.585 , correct to three decimal places.
      [0pt] [2 marks]
    3. In fact, the mean volume of shower gel in a large bottle exceeds twice that in a small bottle by 10 ml . Determine the probability of a Type II error for a test of the hypothesis in part (b)(i) at the 10\% level of significance, based upon random samples of 25 small bottles and 25 large bottles.
      [0pt] [4 marks]
Edexcel S3 Q6
12 marks Standard +0.3
6. The weight of a particular electrical component is normally distributed with a mean of 46.7 grams and a variance of 1.8 grams \(^ { 2 }\). The component is sold in boxes of 12 .
  1. State the distribution of the mean weight of the components in one box.
  2. Find the probability that the mean weight of the components in a randomly chosen box is more than 47 grams.
    (3 marks)
    After a break in production the component manufacturer wishes to find out if the mean weight of the components has changed. A random sample of 30 components is found to have a mean weight of 46.5 grams.
  3. Assuming that the variance of the weight of the components is unchanged, test at the \(5 \%\) level of significance if there has been any change in the mean weight of the components.
    (7 marks)
OCR MEI Further Statistics B AS 2018 June Q5
10 marks Moderate -0.3
5 The flight time between two airports is known to be Normally distributed with mean 3.75 hours and standard deviation 0.21 hours. A new airline starts flying the same route. The flight times for a random sample of 12 flights with the new airline are shown in the spreadsheet (Fig. 5), together with the sample mean. \begin{table}[h]
ABCDEFGHIJKL
13.5953.7233.5843.6433.6693.6973.5503.6743.9243.5633.3303.706
2
3Mean3.638
\captionsetup{labelformat=empty} \caption{Fig. 5}
\end{table} \section*{(i) In this question you must show detailed reasoning.} You should assume that:
  • the flight times for the new airline are Normally distributed,
  • the standard deviation of the flight times is still 0.21 hours.
Carry out a test at the \(5 \%\) significance level to investigate whether the mean flight time for the new airline is less than 3.75 hours.
(ii) If both of the assumptions in part (i) were false, name an alternative test that you could carry out to investigate average flight times, stating any assumption necessary for this test.
(iii) If instead the flight times were still Normally distributed but the standard deviation was not known to be 0.21 hours, name another test that you could carry out.
OCR MEI Further Statistics B AS 2022 June Q3
8 marks Standard +0.3
3 A local council collects domestic kitchen waste for composting. Householders place their kitchen waste in a 'compost bin' and this is emptied weekly by the council. The average weight of kitchen waste collected per household each week is known to be 3.4 kg . The council runs a campaign to try to increase the amount of kitchen waste per household which is put in the compost bin. After the campaign, a random sample of 40 households is selected and the weights in kg of kitchen waste in their compost bins are measured. A hypothesis test is carried out in order to investigate whether the campaign has been successful, using software to analyse the sample. The output from the software is shown below.

Z Test of a Mean
Null Hypothesis \(\mu = 3.4\) Alternative Hypothesis \(\bigcirc < 0 > 0 \neq\) Sample
Mean3.565
s1.05
N40
Result
Z Test of a Mean
Mean3.565
S1.05
SE0.1660
N40
Z0.994
p0.160
  1. Explain why the test is based on the Normal distribution even though the distribution of the population of amounts of kitchen waste per household is not known.
  2. Using the output from the software, complete the test at the \(5 \%\) significance level.
  3. Show how the value of \(Z\) in the software output was calculated.
  4. Calculate the least value of the sample mean which would have resulted in the conclusion of the test in part (b) being different. You should assume that the standard error is unchanged.
OCR MEI Further Statistics B AS 2021 November Q3
12 marks Standard +0.3
3 The weights in kg of male otters in a large river system are known to be Normally distributed with mean 8.3 and standard deviation 1.8. A researcher believes that weights of male otters in another river are higher because of what he suspects is better availability of food. The researcher records the weights of a random sample of 9 male otters in this other river. The sum of these 9 weights is 83.79 kg .
  1. In this question you must show detailed reasoning. You should assume that:
    • the weights of otters in the other river are Normally distributed,
    • the standard deviation of the weights of otters in the other river is also 1.8 kg .
    Show that a test at the \(5 \%\) significance level provides sufficient evidence to conclude that the mean weight of male otters in the other river is greater than 8.3 kg .
  2. Explain whether the result of the test suggests that the weights are higher due to better availability of food.
  3. If the standard deviation of the weights of otters in the other river could not be assumed to be 1.8 kg , name an alternative test that the researcher could carry out to investigate otter weights.
  4. Explain why, even if a test at the \(5 \%\) significance level results in the rejection of the null hypothesis, you cannot be sure that the alternative hypothesis is true.
OCR MEI Further Statistics Major 2021 November Q5
17 marks Standard +0.3
5 A manufacturer uses three types of capacitor in a particular electronic device. The capacitances, measured in suitable units, are modelled by independent Normal distributions with means and standard deviations as shown in the table.
\cline { 2 - 3 } \multicolumn{1}{c|}{}Capacitance
TypeMean
Standard
deviation
A3.90.32
B7.80.41
C30.20.64
  1. Determine the probability that the total capacitance of a randomly chosen capacitor of Type B and two randomly chosen capacitors of Type A is at least 16 units.
  2. Determine the probability that the capacitance of a randomly chosen capacitor of Type C is within 1 unit of the total capacitance of four randomly chosen capacitors of Type B. When the manufacturer gets a new batch of 1000 capacitors from the supplier, a random sample of 10 of them is tested to check the capacitances. For a new batch of Type C capacitors, summary statistics for the capacitances, \(x\) units, of the random sample are as follows. \(n = 10\) $$\sum x = 299.6 \quad \sum x ^ { 2 } = 8981.0$$ You should assume that the capacitances of the sample come from a Normally distributed population, but you should not assume that the standard deviation is 0.64 as for previous Type C capacitors.
  3. In this question you must show detailed reasoning. Carry out a hypothesis test at the \(5 \%\) significance level to check whether it is reasonable to assume that the capacitors in this batch have the specified mean capacitance for Type C of 30.2 units.
WJEC Further Unit 5 2024 June Q4
11 marks Standard +0.3
4. The sports performance director at a university wishes to investigate whether there is a difference in the means of the specific gravities of blood of cyclists and runners. She models the distribution of specific gravity for cyclists as \(\mathrm { N } \left( \mu _ { X } , 8 ^ { 2 } \right)\) and for runners as \(\mathrm { N } \left( \mu _ { Y } , 10 ^ { 2 } \right)\).
  1. State suitable hypotheses for this investigation.
    The mean specific gravity of blood of a random sample of 40 cyclists from the university was 1063. The mean specific gravity of blood of a random sample of 40 runners from the same university was 1060.
  2. Calculate and interpret the \(p\)-value for the data.
  3. Suppose now that both samples were of size \(n\), instead of 40. Find the least value of \(n\) that would ensure that an observed difference of 3 in the mean specific gravities would be significant at the \(1 \%\) level.
WJEC Further Unit 5 Specimen Q5
10 marks Standard +0.3
5. A new species of animal has been found on an uninhabited island. A zoologist wishes to investigate whether or not there is a difference in the mean weights of males and females of the species. She traps some of the animals and weighs them with the following results.
Males (kg)\(5 \cdot 3,4 \cdot 6,5 \cdot 2,4 \cdot 5,4 \cdot 3,5 \cdot 5,5 \cdot 0,4 \cdot 8\)
Females (kg)\(4 \cdot 9,5 \cdot 0,4 \cdot 1,4 \cdot 6,4 \cdot 3,5 \cdot 3,4 \cdot 2,4 \cdot 5,4 \cdot 8,4 \cdot 9\)
You may assume that these are random samples from normal populations with a common standard deviation of 0.5 kg .
  1. State suitable hypotheses for this investigation.
  2. Determine the \(p\)-value of these results and state your conclusion in context.
Edexcel FS1 2022 June Q7
11 marks Challenging +1.2
  1. A machine fills bags with flour. The weight of flour delivered by the machine into a bag, \(X\) grams, is normally distributed with mean \(\mu\) grams and standard deviation 30 grams. To check if there is any change to the mean weight of flour delivered by the machine into each bag, Olaf takes a random sample of 10 bags. The weight of flour, \(x\) grams, in each bag is recorded and \(\bar { x } = 1020\)
    1. Test, at the \(5 \%\) level of significance, \(\mathrm { H } _ { 0 } : \mu = 1000\) against \(\mathrm { H } _ { 1 } : \mu \neq 1000\)
    Olaf decides to alter the test so that the hypotheses are \(\mathrm { H } _ { 0 } : \mu = 1000\) and \(\mathrm { H } _ { 1 } : \mu > 1000\) but keeps the level of significance at 5\% He takes a second sample of size \(n\) and finds the critical region, \(\bar { X } > c\)
  2. Find an equation for \(c\) in terms of \(n\) When the true value of \(\mu\) is 1020 grams, the probability of making a Type II error is 0.0050 , to 2 significant figures.
  3. Calculate the value of \(n\) and the value of \(c\)
Edexcel FS2 2021 June Q2
9 marks Standard +0.3
  1. A company produces two colours of candles, blue and white. The standard deviation of the burning times of the blue candles is 2.6 minutes and the standard deviation of the burning times of the white candles is 2.4 minutes.
Nissim claims that the mean burning time of blue candles is more than 5 minutes greater than the mean burning time of white candles. A random sample of 90 blue candles is found to have a mean burning time of 39.5 minutes. A random sample of 80 white candles is found to have a mean burning time of 33.7 minutes.
  1. Stating your hypotheses clearly, use a suitable test to assess Nissim's belief. Use a \(1 \%\) level of significance.
  2. Explain how the hypothesis test in part (a) would be carried out differently if the variances of the burning times of candles were unknown. The burning times for the candles may not follow a normal distribution.
  3. Describe the effect this would have on the calculations in the hypothesis test in part (a). Give a reason for your answer.
OCR MEI Further Statistics Major 2020 November Q8
10 marks Standard +0.3
8 In this question you must show detailed reasoning. On the manufacturer's website, it is claimed that the average daily electricity consumption of a particular model of fridge is 1.25 kWh (kilowatt hours). A researcher at a consumer organisation decides to check this figure. A random sample of 40 fridges is selected. Summary statistics for the electricity consumption \(x \mathrm { kWh }\) of these fridges, measured over a period of 24 hours, are as follows. \(\Sigma x = 51.92 \quad \Sigma x ^ { 2 } = 70.57\) Carry out a test at the \(5 \%\) significance level to investigate the validity of the claim on the website.
[0pt] [10]
OCR Stats 1 2018 September Q12
8 marks Moderate -0.3
12 In the past, the time spent by customers in a certain shop had mean 10.5 minutes and standard deviation 4.2 minutes. Following a change of layout in the shop, the mean time spent in the shop by a random sample of 50 customers is found to be 12.0 minutes.
  1. Assuming that the standard deviation is unchanged, test at the \(1 \%\) significance level whether the mean time spent by customers in the shop has changed.
  2. Another random sample of 50 customers is chosen and a similar test at the \(1 \%\) significance level is carried out. Given that the population mean time has not changed, state the probability that the conclusion of the test will be that the population mean time has changed.
OCR Further Statistics 2017 Specimen Q7
9 marks Moderate -0.3
7 Sweet pea plants grown using a standard plant food have a mean height of 1.6 m . A new plant food is used for a random sample of 49 randomly chosen plants and the heights, \(x\) metres, of this sample can be summarised by the following. $$\begin{aligned} n & = 49 \\ \Sigma x & = 74.48 \\ \Sigma x ^ { 2 } & = 120.8896 \end{aligned}$$ Test, at the 5\% significance level, whether, when the new plant food is used, the mean height of sweet pea plants is less than 1.6 m .
AQA S2 2009 January Q2
9 marks Standard +0.3
2 A group of estate agents in a particular area claimed that, after the introduction of a new search procedure at the Land Registry, the mean completion time for the purchase of a house in the area had not changed from 8 weeks.
  1. A random sample of 9 house purchases in the area revealed that their completion times, in weeks, were as follows. $$\begin{array} { l l l l l l l l l } 6 & 7 & 10 & 12 & 9 & 11 & 7 & 8 & 14 \end{array}$$ Assuming that completion times in the area are normally distributed with standard deviation 2.5 weeks, test, at the \(5 \%\) level of significance, the group's claim. (7 marks)
  2. It was subsequently discovered that, after the introduction of the new search procedure at the Land Registry, the mean completion time for the purchase of a house in the area remained at 8 weeks. Indicate whether a Type I error, a Type II error or neither has occurred in carrying out your hypothesis test in part (a). Give a reason for your answer.
    (2 marks)
AQA S2 2007 June Q3
8 marks Standard +0.3
3 David is the professional coach at the golf club where Becki is a member. He claims that, after having a series of lessons with him, the mean number of putts that Becki takes per round of golf will reduce from her present mean of 36 . After having the series of lessons with David, Becki decides to investigate his claim.
She therefore records, for each of a random sample of 50 rounds of golf, the number of putts, \(x\), that she takes to complete the round. Her results are summarised below, where \(\bar { x }\) denotes the sample mean. $$\sum x = 1730 \quad \text { and } \quad \sum ( x - \bar { x } ) ^ { 2 } = 784$$ Using a \(z\)-test and the \(1 \%\) level of significance, investigate David's claim.
AQA S2 2009 June Q1
6 marks Moderate -0.3
1 A machine fills bottles with bleach. The volume, in millilitres, of bleach dispensed by the machine into a bottle may be modelled by a normal distribution with mean \(\mu\) and standard deviation 8 . A recent inspection indicated that the value of \(\mu\) was 768 . Yvonne, the machine's operator, claims that this value has not subsequently changed. Zara, the quality control supervisor, records the volume of bleach in each of a random sample of 18 bottles filled by the machine and calculates their mean to be 764.8 ml . Test, at the \(5 \%\) level of significance, Yvonne's claim that the mean volume of bleach dispensed by the machine has not changed from 768 ml .
OCR S2 Q6
10 marks Standard +0.3
6 Alex obtained the actual waist measurements, \(w\) inches, of a random sample of 50 pairs of jeans, each of which was labelled as having a 32 -inch waist. The results are summarised by $$n = 50 , \quad \Sigma w = 1615.0 , \quad \Sigma w ^ { 2 } = 52214.50$$ Test, at the \(0.1 \%\) significance level, whether this sample provides evidence that the mean waist measurement of jeans labelled as having 32 -inch waists is in fact greater than 32 inches. State your hypotheses clearly. \section*{Jan 2006}
OCR H240/02 2022 June Q11
7 marks Standard +0.3
11 In the past the masses of new-born babies in a certain country were normally distributed with mean 3300 g . Last year a publicity campaign was held to encourage pregnant women to improve their diet. Following this campaign, it is required to test whether the mean mass of new-born babies has increased. A random sample of 200 new-born babies is chosen, and it is found that their mean mass is 3360 g . It is given that the standard deviation of the masses of new-born babies is 450 g . Carry out the test at the 2.5\% significance level.