OCR MEI Further Statistics Major 2021 November — Question 5

Exam BoardOCR MEI
ModuleFurther Statistics Major (Further Statistics Major)
Year2021
SessionNovember
TopicHypothesis test of a normal distribution

5 A manufacturer uses three types of capacitor in a particular electronic device. The capacitances, measured in suitable units, are modelled by independent Normal distributions with means and standard deviations as shown in the table.
\cline { 2 - 3 } \multicolumn{1}{c|}{}Capacitance
TypeMean
Standard
deviation
A3.90.32
B7.80.41
C30.20.64
  1. Determine the probability that the total capacitance of a randomly chosen capacitor of Type B and two randomly chosen capacitors of Type A is at least 16 units.
  2. Determine the probability that the capacitance of a randomly chosen capacitor of Type C is within 1 unit of the total capacitance of four randomly chosen capacitors of Type B. When the manufacturer gets a new batch of 1000 capacitors from the supplier, a random sample of 10 of them is tested to check the capacitances. For a new batch of Type C capacitors, summary statistics for the capacitances, \(x\) units, of the random sample are as follows.
    \(n = 10\) $$\sum x = 299.6 \quad \sum x ^ { 2 } = 8981.0$$ You should assume that the capacitances of the sample come from a Normally distributed population, but you should not assume that the standard deviation is 0.64 as for previous Type C capacitors.
  3. In this question you must show detailed reasoning. Carry out a hypothesis test at the \(5 \%\) significance level to check whether it is reasonable to assume that the capacitors in this batch have the specified mean capacitance for Type C of 30.2 units.