Edexcel C3 (Core Mathematics 3) 2013 June

Question 1
View details
1. $$g ( x ) = \frac { 6 x + 12 } { x ^ { 2 } + 3 x + 2 } - 2 , \quad x \geqslant 0$$
  1. Show that \(\mathrm { g } ( x ) = \frac { 4 - 2 x } { x + 1 } , x \geqslant 0\)
  2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0f6fd881-4d4b-4f80-96cc-6da41cc33c60-02_494_922_628_511} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { g } ( x ) , x \geqslant 0\) The curve meets the \(y\)-axis at \(( 0,4 )\) and crosses the \(x\)-axis at \(( 2,0 )\). On separate diagrams sketch the graph with equation
    1. \(y = 2 \mathrm {~g} ( 2 x )\),
    2. \(y = \mathrm { g } ^ { - 1 } ( x )\). Show on each sketch the coordinates of each point at which the graph meets or crosses the axes.
Question 2
View details
2. Given that \(\tan 40 ^ { \circ } = p\), find in terms of \(p\)
  1. \(\cot 40 ^ { \circ }\)
  2. \(\sec 40 ^ { \circ }\)
  3. \(\tan 85 ^ { \circ }\)
Question 3
View details
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0f6fd881-4d4b-4f80-96cc-6da41cc33c60-05_654_967_244_507} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the graph with equation \(y = 2 | x | - 5\).
The graph intersects the positive \(x\)-axis at the point \(P\) and the negative \(y\)-axis at the point \(Q\).
  1. State the coordinates of \(P\) and the coordinates of \(Q\).
  2. Solve the equation $$2 | x | - 5 = 3 - x$$
Question 4
View details
  1. (a) On the same diagram, sketch and clearly label the graphs with equations
$$y = \mathrm { e } ^ { x } \quad \text { and } \quad y = 10 - x$$ Show on your sketch the coordinates of each point at which the graphs cut the axes.
(b) Explain why the equation \(\mathrm { e } ^ { x } - 10 + x = 0\) has only one solution.
(c) Show that the solution of the equation $$\mathrm { e } ^ { x } - 10 + x = 0$$ lies between \(x = 2\) and \(x = 3\)
(d) Use the iterative formula $$x _ { n + 1 } = \ln \left( 10 - x _ { n } \right) , \quad x _ { 1 } = 2$$ to calculate the values of \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\).
Give your answers to 4 decimal places.
Question 5
View details
  1. (i) (a) Show that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( x ^ { \frac { 1 } { 2 } } \ln x \right) = \frac { \ln x } { 2 \sqrt { } x } + \frac { 1 } { \sqrt { } x }\)
The curve with equation \(y = x ^ { \frac { 1 } { 2 } } \ln x , x > 0\) has one turning point at the point \(P\).
(b) Find the exact coordinates of \(P\). Give your answer in its simplest form.
(ii) A curve \(C\) has equation \(y = \frac { x - k } { x + k }\), where \(k\) is a positive constant. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), and show that \(C\) has no turning points.
Question 6
View details
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0f6fd881-4d4b-4f80-96cc-6da41cc33c60-10_775_1392_233_278} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the graph of \(y = \mathrm { f } ( x )\) where $$\mathrm { f } ( x ) = \left\{ \begin{array} { r r } 5 - 2 x , & x \leqslant 4
\mathrm { e } ^ { 2 x - 8 } - 4 , & x > 4 \end{array} \right.$$
  1. State the range of \(\mathrm { f } ( x )\).
  2. Determine the exact value of ff(0).
  3. Solve \(\mathrm { f } ( x ) = 21\) Give each answer as an exact answer.
  4. Explain why the function f does not have an inverse.
Question 7
View details
7. (a) Prove that $$\frac { \cos x } { 1 - \sin x } + \frac { 1 - \sin x } { \cos x } = 2 \sec x , \quad x \neq ( 2 n + 1 ) \frac { \pi } { 2 } , \quad n \in \mathbb { Z }$$ (b) Hence find, for \(0 < x < \frac { \pi } { 4 }\), the exact solution of $$\frac { \cos x } { 1 - \sin x } + \frac { 1 - \sin x } { \cos x } = 8 \sin x$$
Question 8
View details
8. (a) Express \(9 \cos \theta - 2 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\). Give the exact value of \(R\) and give the value of \(\alpha\) to 4 decimal places.
(b) (i) State the maximum value of \(9 \cos \theta - 2 \sin \theta\)
(ii) Find the value of \(\theta\), for \(0 < \theta < 2 \pi\), at which this maximum occurs. Ruth models the height \(H\) above the ground of a passenger on a Ferris wheel by the equation $$H = 10 - 9 \cos \left( \frac { \pi t } { 5 } \right) + 2 \sin \left( \frac { \pi t } { 5 } \right)$$ where \(H\) is measured in metres and \(t\) is the time in minutes after the wheel starts turning.
\includegraphics[max width=\textwidth, alt={}, center]{0f6fd881-4d4b-4f80-96cc-6da41cc33c60-14_572_458_719_1158}
(c) Calculate the maximum value of \(H\) predicted by this model, and the value of \(t\), when this maximum first occurs. Give your answers to 2 decimal places.
(d) Determine the time for the Ferris wheel to complete two revolutions.
Question 9
View details
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0f6fd881-4d4b-4f80-96cc-6da41cc33c60-16_570_903_237_534} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve with equation \(x = \left( 9 + 16 y - 2 y ^ { 2 } \right) ^ { \frac { 1 } { 2 } }\).
The curve crosses the \(x\)-axis at the point \(A\).
  1. State the coordinates of \(A\).
  2. Find an expression for \(\frac { \mathrm { d } x } { \mathrm {~d} y }\), in terms of \(y\).
  3. Find an equation of the tangent to the curve at \(A\).