Edexcel C3 2009 January — Question 7

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2009
SessionJanuary
TopicFixed Point Iteration

7. $$f ( x ) = 3 x e ^ { x } - 1$$ The curve with equation \(y = \mathrm { f } ( x )\) has a turning point \(P\).
  1. Find the exact coordinates of \(P\). The equation \(\mathrm { f } ( x ) = 0\) has a root between \(x = 0.25\) and \(x = 0.3\)
  2. Use the iterative formula $$x _ { n + 1 } = \frac { 1 } { 3 } \mathrm { e } ^ { - x _ { n } }$$ with \(x _ { 0 } = 0.25\) to find, to 4 decimal places, the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\).
  3. By choosing a suitable interval, show that a root of \(\mathrm { f } ( x ) = 0\) is \(x = 0.2576\) correct to 4 decimal places.